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1 Introduction 

The self-controlled case series method, or case series method for short, is a 

conditional cohort method for estimating the strength of association between the 

incidence of specified events and a time-varying exposure using data only on cases. 

The method was originally developed to investigate associations between vaccination 

and acute potential adverse events [3]. Other applications, along with a detailed 

account of the theory and its implementation in standard statistical packages are 

described in Whitaker et al [11]. A semi-parametric version of the method has also 

been developed [7]. 

 

While the maximum likelihood estimator of the relative incidence is guaranteed good 

asymptotic properties for both parametric and semi-parametric models, in practice 

samples are often small, especially for rare conditions. Limited small-sample 

simulations for the semi-parametric model suggest that it performs well in samples of 

moderate size [7]. However, no systematic evaluation of the statistical properties of 

the method has been undertaken. Some comparative evaluations have been done, 

comparing the case series method with case-control, cohort and other case only 

methods [1, 4, 6].  

 

Our aim in this paper is to investigate in more detail the factors that influence the 

magnitude of the bias and variance of the relative incidence estimator, or more 

precisely the estimator of the log relative incidence. For simplicity, we confine our 

investigations to the parametric self-controlled case series model and to the risks 

associated with exogenous point exposures [2]. 

 

The paper is organised as follows. In section 2 we introduce the case series model. 

Explicit expressions for the asymptotic bias, variance and mean square error in a 

simplified but relevant scenario are derived and studied in section 3. Section 4 

describes a simulation study to evaluate bias and variance in small samples under 

more realistic scenarios. The results from this simulation study are presented in 

section 5. In section 6, we discuss the application of Monte Carlo methods to self-

controlled case series analyses, including bootstrap estimation and randomization 

tests. Finally in section 7 we discuss our findings and make some recommendations.    
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2 The self-controlled case series model 

The self-controlled case series model is derived from an underlying Poisson cohort 

model. Thus, we consider a cohort of individuals, individual i being observed in the 

interval ( , ]i ia b . This interval is the observation period for individual i; we shall use 

age as the underlying time line, but other choices are possible, notably calendar time. 

 

The observation period for individual i is partitioned into intervals indexed by 

0,1,...,j J=  (for age groups) and 0,1,...,k K= (for risk periods). The age groups are 

pre-determined, as are the durations of the post-exposure risk periods. Risk periods 

1,...,k K= correspond to increased or reduced risks relative to the baseline control 

period, which is coded 0k = . The age groups are typically of the form 

0 0 1 2 1 1(0, ], ( , ],..., ( , ], ( , )J J JA A A A A A− − − ∞ . Post-exposure risk periods are typically of 

the form 1( , ]i k i kE B E B−+ +  where iE  is the age at exposure of individual i and 

0 ... KB B< < , the remainder of the observation time being allocated to the control 

period. 

 

Let ijke  denote the duration of time that individual i spends in age group j and in risk 

period k during the course of his or her observation period. Conditioning on the 

exposure history over the entire observation period ( , ]i ia b , we assume that events of 

interest for individual i arise as a non-homogeneous Poisson process with rate ijkλ . If 

ijkn denotes the number of events arising for individual i in age group j and risk period 

k, then 

 Poisson( )ijk ijk ijkn eλ� . 

 

Conditioning on the total number of events ,i j k ijkn n= Σ  arising in ( , ]i ia b , which is 

possible by virtue of the assumption that the exposure is an exogenous variable [2, 7], 

the log-likelihood contribution of individual i is multinomial with kernel 
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We assume a log-linear model for the Poisson rate of the form 

 

 log( )ijk i j kλ ϕ α β= + +  (2) 

 

where iϕ  is an individual effect, jα  is the age effect associated with age group j, and 

kβ  is the exposure effect associated with risk group k, with 0 0 0α β= = . The 

parameters jα  and kβ  are thus log relative incidences. 

 

Substituting (2) in (1), and summing over individuals, we obtain a product 

multinomial log-likelihood kernel: 
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This is the self-controlled case series log-likelihood. The model is self-controlled 

because the individual effects iϕ  cancel out. Thus multiplicative confounders that do 

not vary over the individual’s observation period – which might include, for example, 

genetic effects, socio-economic status, location, underlying state of health, individual 

frailties – are necessarily adjusted in the analysis. It is a case series model because 

only individuals who have experienced one or more events, that is individuals for 

whom 1in ≥ , contribute non-trivially to the log-likelihood (3). Thus, only cases need 

to be sampled. These features make the self-controlled case series method an 

attractive alternative to other methods in some settings.  

 

The efficiency of the case series model relative to the underlying cohort model, and 

the assumptions required, in particular the important assumption that the exposure 

variable is exogenous, are discussed in [7]. 
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3 Asymptotic bias, variance and mean square error  

In this section we study in greater detail the asymptotic properties of the estimators of 

the log relative incidence.  

 

3.1 A simplified scenario 

Our aim is to obtain qualitative insight into the factors which affect bias and variance. 

So as to obtain simple explicit expressions, we make the following assumptions.  

 

• All cases have the same observation period ( , ] ( , ]i ia b a b= .  

• There are no underlying age effects, that is, 0jα = for all j. 

• There is at most one post-exposure risk period, that is, K = 1. 

• All cases experience an exposure risk period of common duration 1e  and a 

control period of common duration 0e , with 0 1e e b a+ = − . 

 

The age parameters may thus be dropped from the model. We denote 1β β= . Under 

these assumptions, the log-likelihood (3) for n events reduces to the expression 

 

 ( )1 0( ) logl x n e e eββ β= − +  (4) 

 

where x  is the number of events occurring in the exposure risk period. The maximum 

likelihood estimator of β  is 

 

� log log
1

x r
n x r

β    = −   − −   
 

 

where 1 0 1/( )r e e e= +  is the ratio of the length of the risk period to the observation 

period. 

 

Expanding �β  as a function of x  by Taylor series to fourth order, we obtain the 

following expressions for the asymptotic bias and variance, to second order. 
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Combining expressions (5) and (6), we obtain the asymptotic mean squared error: 
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3.2 Asymptotic properties 

Consider first the asymptotic bias. The expression in square brackets in (5) is always 

greater than 1, so that  

 

 �( ) ( )sgn bias( ) sgn (1 )re rββ = − −  

 

and the second-order bias is always greater in magnitude than the first-order bias. 

  

The asymptotic bias is zero when 1re rβ = − , which occurs when the expected 

number of cases in the risk period equals the expected number of events in the control 

period. The asymptotic bias is negative (respectively, positive) when the expected 

number of events in the risk period is less (respectively, greater) than that in the 

control period. In practice, the risk period is determined by the scientific question of 

interest, and the observation period is determined both by the age range at which 

exposures occur and by the practicalities of data collection. For a given value of r, the 

asymptotic bias is minimized when  
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For a fixed value of β , the asymptotic bias increases in magnitude as r  tends to 0 or 

1. Similarly, for a fixed value of r, the asymptotic bias increases in magnitude as β  

tends to ±∞ . Figure 1 shows the value of the second-order asymptotic bias for n = 50, 

for different values of r and eβ . The asymptotic bias is negligible unless the ratio of 

the risk period to observation time is very close to 0 or 1, but increases sharply in 

these regions for smaller sample sizes.  

 

Turning now to the asymptotic variance, its value to second-order is always greater 

than to first order. Regarding expression (6) as a function of r, its minimum is attained 

when 1re rβ = − . Thus, the asymptotic variance is smallest when the expected 

number of events in the risk period equals the expected number in the control period. 

Figure 2 shows �var( )β  for n = 50, for different values of r and eβ . As for the bias, 

the asymptotic variance increases as r  tends to 0 or 1 and as β  tends to ±∞ .  

 

The second-order asymptotic mean squared error (7) is close to the second-order 

variance. It is minimized when 1re rβ = − , but is typically very flat for values r in the 

range (0.1, 0.9) and | | log(10)β < . 

 

4. Simulation study 

In this section we study the properties of the maximum likelihood estimator �β  by 

simulation, in more realistic scenarios than that described in section 3. In particular, 

we no longer assume that there is no effect of age, or that all individuals have the 

same exposure risk period. Our aim is to investigate the limits of validity of 

asymptotic theory in finite samples.  

 

Because �β  is the logarithm of a ratio estimator, it takes values ±∞  with positive 

probability in finite samples. Thus, rather than the bias per se, which is undefined, we 

investigate the median �( )nm β  of the estimator in samples of size n. This provides an 
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appropriate measure of central tendency of the estimator in finite samples. Note that 

� �lim ( ) ( )nn
m Eβ β

→∞
=  since �β  is asymptotically normally distributed. From now on, the 

term ‘bias’ refers to �( )nm β β− . We also investigate the coverage probability of the 

Wald 95% confidence interval calculated from � �1.96 se( )β β± ×  where �se( )β  is the 

asymptotic standard error (for unbounded estimates the confidence interval is in effect 

( , )−∞ +∞ ). 

 

The simulations were set up to mimic those scenarios that typically occur in studies of 

paediatric vaccines. The simulation experiments are described in the following 

sections.  

 

4.1. Structure of the simulation study 

Each simulation required the following parameters to be specified. 

 

• Observation period, always taken to be 500 days for all individuals. 

• Length of the risk period following exposure (days): 1, 5, 10, 25, 50, 100, 200, 

indefinite (described in section 4.4). 

• True relative incidence RI = e  = 0.5, 1, 1.5, 2, 5, 10. 

• Distribution for age at exposure Ei (section 4.3). 

• Age groups and age-specific relative incidences (section 4.2, Figure 4). 

• Baseline rate, always taken to be 72 10iϕ −= × per day, or one per hundred 

thousand over 500-day observation period. Thus the event is assumed to be 

rare, and with high probability a case has only a single event. 

• Sample size n = 10, 20, 50, 100, 200, 500, 1000 cases. 

 

Figure 3 shows the structure of the simulation study in graphical form.  For a given set 

of parameters (listed above) and random seed, a set of n exposure times were 

generated, together with n marginal total number of events per individual. These 

marginal totals were generated using a truncated Poisson distribution (excluding 

zero), conditionally on the exposure history. 
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The exposures and marginal totals were resampled between runs. however, in each 

run of 10,000 simulations, the exposures and marginal totals were kept fixed. This is 

to mimic the fact that the case series method is conditional on exposures and marginal 

totals.  

 

Within a run, the events for each individual were randomly reallocated 10,000 times 

to the age and risk categories within each individual’s person time. This was done 

based on the case series model, using a multinomial distribution. 

 

The run size of 10,000 ensures that the coverage probability for a 95% confidence 

interval is estimated with Monte Carlo standard error of about 0.0022, and hence is 

accurate to within about 0.005 (or 0.5% when expressed as a percentage). 

 

4.2 Age effects 

In most self-controlled case series analyses, it is necessary to control for age. We 

varied the effect of age on the event incidence according to four practically realistic 

scenarios. These four types of age effect are defined as follows; in each case the age 

groups are given, along with the associated age-specific relative incidences jeα  (in 

brackets) 

 

• Weak symmetric age effect: 1-100 (1), 101-200 (1.2), 201-300 (1.5), 301-400 

(1.2), and 401-500 (1). 

•  Strong symmetric age effect: 1-50 (1), 51-100 (2), 101-150 (3), 151-200 (4), 

201-250 (5), 251-300 (5), 301-350 (4), 351-400 (3), 401-450 (2), and 451-500 

(1). 

• Weak monotone increasing age effect: 1-100 (1), 101-200 (1.1), 201-300 (1.2), 

301-400 (1.3), 401-500 (1.4) 

• Strong monotone increasing age effect: 1-50 (1), 51-100 (1.5), 101-150 (2), 

151-200 (2.5), 201-250 (3), 251-300 (3.5), 301-350 (4), 351-400 (4.5), 401-

450 (5), and 451-500 (5.5).  

 

Figure 4 shows bar charts representing each of the above four choices of age groups 

and age-specific relative incidences.  



 10 

 

4.3 Exposure distribution 

The precision of the relative incidence estimator depends on the extent of between-

individual variation in age at exposure. We used the following four beta distributions 

on [0,500]  to generate age at exposure.  

 

• Mean age 250 days and standard deviation 100 days. 

• Mean age 250 days and standard deviation 50 days. 

• Mean age 125 days and standard deviation 100 days. 

• Mean age 125 days and standard deviation 50 days. 

 

These distributions are shown in Figure 5. 

 

For some simulations, much more highly peaked distributions of age at exposure were 

also considered, with mean age of 125 days and standard deviation of 10, 20, 30, and 

40 days.  

 

4.4 Risk periods 

Before carrying out a self-controlled case series analysis, a major issue to consider is 

how to define the risk periods. Generally speaking the risk periods are elicited from 

experts. Different studies need different risk periods. These range from very short (a 

few days) to very long (several months), and occasionally may be indefinite.  

 

We simulated data with risk periods of 1, 5, 10, 25, 50, 100 and 200 days. We also 

investigated indefinite risk periods. Owing to potentially strong confounding between 

age and exposure effects with indefinite risk periods, we considered these separately 

and varied the proportion of cases exposed (in other simulations we assumed all cases 

were exposed).  

 

5 Results of the simulation study 

The presentation of results is organised in five subsections. In subsection 5.1 we 

present results for our ‘standard scenario’. In subsection 5.2 we vary the risk period. 



 11 

In subsection 5.3 we vary the age effect. In subsection 5.4 we vary the age at 

exposure. Finally, in subsection 5.5 we consider indefinite risk periods. 

 

5.1 The standard scenario 

For our standard scenario the risk period was 25 days, all cases experienced the 

exposure, the age effect was weak symmetric (see Figure 4) and the distribution of 

age at exposure has mean age 250 days and standard deviation 100 days (see Figure 

5). 

 

Table 1 shows the results for the standard scenario. For very small samples ( 20n ≤ ) 

and low relative incidences (RI 1≤ ), there is considerable bias: effectively, in most 

samples there were zero events within a risk period, yielding unbounded estimates of 

�β .  For relative incidences greater than 1, the bias is moderate even for sample sizes 

as small as 10. For sample sizes in excess of 20, the bias is small for most values of 

the relative incidence (the exception being RI = 0.5).  

 

The bias tends to be negative for low relative incidences, and positive for large 

relative incidences. This reflects the asymptotic results obtained in section 3,  

namely that, in the absence of age effects, the asymptotic bias is negative when 

(1 ) /e r rβ < −  and positive when (1 ) /e r rβ > − .  Here, 25 / 500 0.05r = = . Thus, 

asymptotically, and provided that age effects are not too strong, one might expect zero 

bias at 20eβ
� . In finite samples, this point appears to be reached for lower relative 

incidences: for example, with 50n = , it is reached at 5eβ
�  in the standard scenario. 

 

Finally, note from Table 1 that the coverage probabilities of the Wald 95% confidence 

intervals are close to their nominal values for all combinations of sample size and 

relative incidence, though tend to be conservative especially for low sample sizes. 

Similar results (not shown) were obtained for 90% and 99% confidence intervals. 

 

5.2 Risk period of fixed length 

The fixed-length risk periods were: 1, 5, 10, 50, 100 and 200 days. Table 2 shows the 

results (with n = 20, 100 and 500) for the short risk periods of 1 and 5 days, and Table 

3 shows the results for longer risk periods of  50 and 100 days.  
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As expected from the asymptotic calculations, the bias increases in absolute value as 

r, the ratio of the risk period to the observation period (500 days), tends towards zero. 

With a 1-day risk period, the bias is considerable in small or moderate samples, unless 

the relative incidence is high: it is possible to estimate β with little bias for a 1-day 

risk period with sample sizes of 100 cases provided that the relative incidence is in 

excess of 5. A slight increase in the length of the risk period has a big effect: there is 

little bias with sample sizes as small as 20 for relative incidences in excess of 5 when 

the risk period is 5 days. 

 

For longer risk periods (50 and 100 days), Table 3 shows that there is little bias even 

for sample sizes as small as 20, when the relative risk is greater than 1. The results for 

the 10 day risk period were broadly similar to those for 25 days (the standard 

scenario), while the results for the 200 day risk period were similar to those for the 

100 day risk period (not shown). 

 

5.3 Age at event 

In this section, we summarize the results we obtained by varying the underlying age 

effect. We investigated sample sizes 20, 100 and 500 and risk periods of 10, 25 and 50 

days, with relative incidences of 1, 2 and 5. The distribution of age at exposure was as 

in the standard scenario, namely mean 250 days and standard deviation 100 days.  

Table 4 gives the results for sample size 100 with risk period 25 days. Varying the age 

effect has little influence on the magnitude of the bias or on the coverage 

probabilities, for any of the risk intervals considered here. Similar results were 

obtained for other sample sizes (not shown). 

 

5.4 Age at exposure 

In the standard scenario, the distribution of age at exposure was a symmetrical beta 

distribution with 250 days and standard deviation 100 days. Here we evaluate the 

performance of the model when we vary the mean and standard deviation. In view of 

possible confounding between age and exposure effects, interest focuses particularly 

on the bias when a positively skewed distribution of age at exposure is combined with 

a strong monotone increasing age at event effect.  
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Table 5 presents the results for samples of 100 cases, risk periods 25 and 50 days, 

relative incidences of 1 and 5, and both the weak symmetric and the strong monotone 

age effects. There is little evidence that the mean or standard deviation of the age at 

exposure have any discernible impact on the bias or coverage probabilities. Similar 

results were obtained for the 10 day risk period, and for RI =  2 (not shown). 

 

5.5 Indefinite risk periods 

The self-controlled case series method can be used even when the risk period 

following an exposure is indefinite [5, 11]. However, exposure and age effects may be 

confounded. This can be controlled by including unexposed cases, which contribute 

exclusively to the estimates of the age effects.  

 

For age at event, we used the weak symmetric, and the strong monotone increasing 

age distributions. We investigated six beta distributions of age at exposure: mean 250 

days and standard deviation 100 days, mean 125 days and standard deviation 50 days, 

and four more peaked distributions with mean 125 days and standard deviations 40, 

30, 20 and 10 days. We studied relative risks of 1, 2 and 5. 

 

We used samples of 100 exposed cases, augmented by 0%, 20%, 50% and 100% 

unexposed cases. For example, the sample augmented by 20% unexposed cases 

contained 100 exposed cases and 20 unexposed cases. Table 6 shows the results for 

the strong symmetric age effect and distributions of age at exposure with mean 125 

days and standard deviations 10, 30 and 50 days.  

 

When the relative incidence is 1, β is estimated without substantial bias even with no 

unexposed cases. The greater the relative incidence and the more peaked the 

distribution of age at exposure, the greater the bias: when the relative incidence is 5, 

the estimate is swamped by bias. However, inclusion of just 20 unexposed cases is 

sufficient to greatly reduce the bias. Interestingly, inclusion of more than 20 

unexposed cases has little further beneficial effect. The coverage probabilities of the 

95% confidence intervals are unaffected. 
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When the distribution of age at exposure is more evenly spread over the observation 

period (mean 250 and standard deviation 100), there is little bias even when only 

exposed cases were included (not shown).  

 

6 Monte Carlo methods 

In this section we describe the application of Monte Carlo methods to the self-

controlled case series method, with reference to two example data sets relating to 

measles, mumps and rubella (MMR) vaccine.  

 

6.1 The data 

In the first data set the outcome is aseptic meningitis, which is occasionally associated 

with receipt of MMR vaccines containing the Urabe mumps strain. There are 10 

events in 10 children observed from ages 366 to 730 days of age inclusive. The 

analysis uses two age groups (366 to 547 days, and 548 to 730 days) and a single risk 

period 15 – 35 days post-MMR. There were 5 events in the risk period. For further 

details, see [9, 11]. 

 

In the second data set, the outcome is idiopathic thrombocytopenic purpura (ITP), an 

uncommon bleeding disorder occasionally associated with MMR vaccination. The 

observation period is 366 to 730 days of age. There are 35 children with 44 ITP 

events. The analysis uses three age groups (366 – 487, 488 – 609, and 610 – 730 days 

of age) and three risk periods: 0 – 14 days, 15 – 28 and 29 – 42 days post-MMR. 

There were 2 events in the 0 – 14 day, 8 in the 15 – 28 day, and 3 in the 29 – 42 day 

risk periods. For further details see [10, 11]. 

 

In both data sets, the small number of events in the risk periods calls into question the 

validity of the asymptotic theory underpinning the calculation of confidence intervals 

and p values. 

 

6.2 Bootstrap 

The most readily applicable bootstrap method for self-controlled case series studies is 

the non-parametric method based on resampling of cases. This is preferred to 

resampling of residuals, since it is far from clear what an appropriate residual, or set 

of residuals, would be in this context. Note that the units to be resampled are the 
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cases, not the events (an individual who has experienced several events constitutes 

one case). 

 

As previously noted, the bias of �β  is undefined in finite samples. We thus investigate 

the median �( )Bm β  of the bootstrap samples; it is desirable that �β  should lie close to 

this value. We also obtain percentile and bias-corrected percentile confidence 

intervals [8]. All results are based on 4999 bootstrap samples. The results are shown 

in Table 7. Figure 6 shows the centres of the distributions of the bootstrap replicates 

for the two data sets; unbounded estimates have been excluded from the figure. 

 

The point estimates are close to the median bootstrap values, suggesting that the bias 

is mild, but there are substantial discrepancies between asymptotic and bootstrap 95% 

confidence intervals. With the possible exception of Figure 6(c), the bootstrap 

distributions display marked evidence of non-normality. The multiple modes 

correspond to estimates based on distinct numbers of events within the risk period. 

 

6.2 A randomization test 

Throughout this paper the emphasis has been on point and interval estimation. In 

some circumstances, however, it is required to test the null hypothesis of no 

association between the exposure and event of interest. For this purpose, the 

likelihood ratio test is readily applicable when the sample size is sufficiently large that 

asymptotic theory can be relied upon. When this is not the case, however, other 

methods may be required. We describe a suitable randomization test, implemented by 

Monte Carlo methods. 

 

Under the null hypothesis of no association, exposure histories and event histories are 

independent. A randomization test may thus be obtained by randomly pairing event 

times and exposures. More specifically, consider a sample of n cases, case i having in  

events at times 1,..., ii int t and exposure history iE . We then permute the exposure 

histories from 1{ ,..., }nE E  and allocate the permuted values ( )iEσ  to obtain new data of 

the form 1 ( ){( , ]; ,..., ; }
ii i i in ia b t t Eσ  . These data are then analysed using the self-

controlled case series method to produce a value of the log-likelihood ratio statistic 
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Dσ . The distribution of the Dσ  over all permutations (which thus includes the 

observed value 0D , say) constitutes the null distribution, from which the p value may 

be calculated from 0#{ : }D D Dσ σ ≥ . In practice, it is usually not feasible to obtain all 

permutations, in which case a random sample is used, augmented by 0D . 

 

This randomization test is standard [8]. The only special point to note is that the test 

requires that exposure histories are collected in the range (min{ }, max{ }]i ia b  to 

ensure that reallocated histories are relevant to all the observation periods ( , ]i ia b . 

 

For the aseptic meningitis data, none of  999 randomly sampled values of Dσ  

exceeded D0 = 11.51. Thus, the estimated p-value is (0+1) / (999+1) = 0.001. The p 

value based on the asymptotic 2 (1)χ  distribution is 0.0007. For the ITP data, 9 values 

of Dσ  out of 999 exceeded D0 = 13.43. Thus the estimated p value is (9+1) / (999+1) 

= 0.010. The p value based on the asymptotic 2 (3)χ  distribution is 0.0038. Figure 7 

shows the randomization and asymptotic distributions under the null hypothesis. 

There is a substantial difference between the randomization and asymptotic 

distributions in each case, though the randomization and asymptotic tests lead to 

identical conclusions in these examples. 

 

7 Discussion 

The aim of this paper was to study the bias and variance of the maximum likelihood 

estimator of the relative incidence in self-controlled case series studies. We were 

particularly interested in two aspects: determining which factors most substantially 

affect the bias and the variance, and the performance of the estimators in small to 

medium samples. 

 

The asymptotic expressions we obtained in a simple scenario suggest that the bias in β 

is small unless (a) the risk period is short in relation to the observation period and the 

relative risk is low, and (b) the risk period is long in relation to the observation period 

and the relative risk is high. Specifically, the direction and magnitude of the bias is 
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governed by the quantity (1 )re rβ − − , where r is the ratio of the risk period to the 

observation period and eβ is the relative incidence.  

 

This qualitative conclusion was confirmed in simulations. Thus, we found that the 

bias is small when there are 50 or more cases, the relative incidence is not less than 1, 

and r is at least 0.05. For sample sizes of 20, the bias is large when the relative 

incidence is less than 2 or r is less than 0.05. Variation in age at exposure and age at 

event have only marginal effect on the bias for finite risk periods. For indefinite risk 

periods, confounding between exposure and age effects may be controlled by 

inclusion of about 20% of unexposed cases. The asymptotic Wald confidence 

intervals are generally slightly conservative, but perform well whatever the sample 

size. When the estimate of the log relative incidence is unbounded, a confidence 

interval obtained by profile likelihood methods [8] is preferable. 

 

When there is doubt about the validity of asymptotics, simulation inference methods 

may be used. These include non-parametric bootstrap methods based on resampling 

complete cases (that is, individuals rather than events), and randomization tests. Note, 

however, that the use of randomization tests requires that exposures over the entire 

period (min{ }, max{ }]i ia b  are obtained. 

 

The scenarios we chose to investigate relate to those that are likely to arise in studies 

of vaccine safety with a single post-vaccination risk period. For simplicity, we did not 

consider multiple exposures, long but fixed risk periods (with r close to 1), semi-

parametric estimation of the age effect, between-individual variation in observation 

periods, and continuous exposures. Most of these more general scenarios can 

nevertheless be related to those used here. Thus, distinct risk periods can be 

considered separately, using a value of r calculated as the ratio of the risk period of 

interest to the sum of the risk period and control period; long fixed risk periods will 

yield results similar to those obtained with indefinite risk periods; between-individual 

variation in observation periods may be accommodated by taking r to be the ratio of 

the risk period to the average observation period; and age effects were shown to have 

only moderate impact, though of course semi-parametric estimation will necessarily 

yield less precise estimates.  
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Our findings are thus broadly relevant to case series studies of point exposures. For 

continuous time-varying exposures, further investigations in small samples are 

required. In such settings, the notion of risk period is no longer relevant, and the 

within-individual standard deviation of the exposure variable must be considered 

instead. To date, the only application of self-controlled case series methods with 

continuous exposure variables of which we are aware is to environmental time series. 

We have argued elsewhere that time series methods are generally more appropriate 

than case series methods for the analysis of such data [12], and in any case the sample 

sizes used in such studies are usually large. 
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Table 1 Standard scenario.  First row: median estimate of log( )RIβ = . Second row:  
  percentage coverage of 95% confidence interval.  

 
Table 2 Short risk periods.  First row: median estimate of log( )RIβ = . Second row:
   percentage coverage of 95% confidence interval.  

 
True value 

 
RI      β  

 

 
 

n = 10 
 

 
 

n = 20 
 

 
 

n = 50 
 

 
 

n = 100 

 
 

n = 200 

 
 

n = 500 

 
 

n = 1000 

 0.5      -0.693 -∞ 
97 
 

-∞ 
96 

-0.973 
96 

-0.676 
97 

-0.752 
97 

-0.703 
96 

-0.701 
95 

1         0.000 -∞ 
96 
 

-0.120 
97 
 

-0.006 
96 

 

-0.005 
97 

-0.011 
95 

-0.004 
95 

-0.004 
95 

1.5      0.405 0.541 
97 
 

0.347 
97 
 

0.391 
97 

 

0.380 
0.96 

0.400 
95 

0.401 
95 

0.404 
96 

2         0.693 0.695 
96 
 

0.646 
96 
 

0.676 
97 

 

0.681 
96 

0.689 
95 

0.693 
95 
 

0.691 
95 

5         1.609 1.584 
98 
 

1.617 
97 
 

1.611 
96 

 

1.612 
95 

1.612 
95 

1.610 
95 

1.610 
95 

10        2.303 2.415 
99 
 

2.367 
96 
 

2.325 
95 

 

2.315 
95 

2.306 
95 

2.304 
95 

2.305 
95 

 1 day risk period  5 day risk period 
 

True value 
 

RI      β  
 

 
 

n = 20 
 

 
 

n = 100 
 

 
 

n = 500 
 

  
 

n = 20 

 
 

n = 100 

 
 

n = 500 

 0.5        -0.693 -∞ 
98 
 

-∞ 
98 

-∞ 
98 

 -∞ 
97 

-∞ 
98 

-0.634 
96 

1            0.000 -∞ 
96 
 

-∞ 
98 
 

-0.074 
99 
 

 -∞ 
98 

-0.108 
97 

-0.058 
97 

1.5         0.405 -∞ 
94 
 

-∞ 
96 
 

-0.035 
98 
 

 -∞ 
96 

0.018 
97 

0.390 
96 

2            0.693 -∞ 
94 
 

-∞ 
96 
 

0.623 
97 
 

 -∞ 
94 

0.625 
97 

 

0.646 
96 

5            1.609 -∞ 
98 
 

1.534 
97 
 

1.554 
96 
 

 1.557 
96 

1.577 
97 

1.607 
95 

10           2.303 -∞ 
95 
 

2.367 
96 
 

2.269 
96 
 

 2.299 
97 

2.291 
96 

2.299 
95 
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Table 3 Longer risk periods.  First row: median estimate of log( )RIβ = . Second 
  row: percentage coverage of 95% confidence interval.  

 
Table 4 Effect of age at event for samples of size 100. First row: median estimate of  
 log( )RIβ = . Second row: percentage coverage of 95% confidence interval.  

 50 day risk period  100 day risk period 
 

True value 
 

RI      β  
 

 
 

n = 20 
 

 
 

n = 100 
 

 
 

n = 500 
 

  
 

n = 20 

 
 

n = 100 

 
 

n = 500 

 0.5      -0.693 -0.813 
97 
 

-0.712 
97 

-0.699 
95 

 -0.790 
97 

-0.712 
95 

-0.697 
95 

1          0.000 -0.058 
97 
 

-0.015 
97 
 

-0.003 
95 
 

 -0.016 
97 

-0.015 
97 

0.003 
95 

1.5       0.405 0.401 
97 
 

0.398 
96 
 

0.402 
95 
 

 0.412 
97 

0.409 
95 

0.405 
95 

2         0.693 0.675 
97 
 

0.690 
95 
 

0.693 
95 
 

 0.709 
96 

0.700 
95 

 

0.694 
95 

5         1.609 1.637 
97 
 

1.616 
95 
 

1.611 
95 
 

 1.706 
95 

1.623 
95 

1.611 
95 

10        2.303 2.410 
96 
 

2.322 
95 
 

2.306 
95 
 

 2.437 
96 

2.335 
95 

2.308 
95 

 
Risk period 

(days) 

 
True value 

 
RI      β  

 

 
Weak 

symmetric 
age effect 

 

 
Strong 

symmetric 
age effect 

 
Weak 

monotone 
increasing 
age effect 

 

 
Strong 

monotone 
increasing 
age effect 

 
 1      0.000 -0.054 

97 
-0.021 

96 
-0.026 

95 
-0.032 

97 
     2      0.693 0.641 

97 
0.683 

97 
0.679 

97 
0.686 

96 

 
 

10 

     5      1.609 1.596 
96 

1.605 
95 

1.592 
95 

1.601 
96 

     1      0.000 -0.005 
97 

-0.033 
96 

-0.017 
97 

-0.029 
97 

2      0.693 0.681 
96 

0.685 
97 

0.683 
95 

0.684 
96 

 
 
 

25 
5      1.609 1.612 

95 
1.619 

95 
1.615 

95 
1.616 

96 
1      0.000 -0.015 

97 
-0.009 

96 
-0.016 

97 
-0.011 

97 
2      0.693 0.690 

95 
0.698 

97 
0.689 

95 
0.693 

96 

 
 
 
 

50 5      1.609 1.616 
95 

1.627 
95 

1.615 
95 

1.628 
96 
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Table 5 Effect of age at exposure for samples of size 100. First row: median estimate 
of log( )RIβ = . Second row: percentage coverage of 95% confidence interval.  

  25 day risk period 
 

50 day risk period 

Exposure 
distribution 

 
Mean   SD 

 
True value 

 
RI         E 

Weak 
symmetric 
age effect 

Strong 
monotone 
increasing 
age effect 

Weak 
symmetric 
age effect 

Strong 
monotone 
increasing 
age effect 

1       0.000 -0.005 
97 

-0.029 
97 

-0.015 
97 

-0.011 
97 

250     100 

5       1.609 1.612 
95 

1.616 
96 

1.616 
95 

1.628 
96 

1       0.000 -0.027 
97 

-0.030 
97 

-0.093 
96 

-0.019 
95 

250       50 

5       1.609 1.616 
95 

1.613 
95 

1.609 
95 

1.626 
95 

1       0.000 -0.020 
97 

-0.052 
97 

-0.014 
96 

-0.026 
96 

125      100 

5       1.609 1.611 
95 

1.620 
95 

1.620 
95 

1.628 
95 

1       0.000 -0.030 
97 

-0.039 
96 

-0.014 
96 

-0.017 
97 

125       50 

5       1.609 1.608 
95 

1.622 
95 

1.618 
95 

1.629 
95 

 
Table 6 Indefinite risk periods. First row: median estimate of log( )RIβ = . Second  
   row: percentage coverage of 95% confidence interval.  

 

 
Exposure 

distribution 
 

Mean     SD 

 
True value 

 
 

RI      β  
 

 
100 exposed 

cases 
 

 
100 exposed 

cases and 
20 

unexposed 

 
100 exposed 

cases and 
50 

unexposed 
 

 
100 exposed 

cases and 
100 

unexposed 
 

 1      0.000 0.004 
95 

0.004 
96 

0.001 
95 

0.005 
95 

     2      0.693 0.715 
96 

0.713 
96 

0.712 
96 

0.713 
97 

125       50 
 

     5      1.609 1.696 
96 

1.669 
97 

1.684 
97 

1.670 
97 

     1      0.000 0.003 
95 

0.002 
95 

0.001 
95 

0.002 
96 

2      0.693 0.731 
96 

0.716 
97 

0.722 
97 

0.712 
97 

125      30 
 
 

5      1.609 1.733 
96 

1.652 
97 

1.682 
97 

1.666 
97 

1      0.000 -0.090 
96 

-0.012 
96 

0.009 
96 

0.003 
97 

2      0.693 0.731 
98 

0.684 
98 

0.716 
96 

0.728 
97 

125     10 
 
 
 

5      1.609 2.824 
98 

1.679 
98 

1.668 
98 

1.662 
97 
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Table 7 Asymptotic and bootstrap results for aseptic meningitis and ITP data 
 

 
Asymptotic 

 

  
Bootstrap 

 
Data set 

 
Risk 

period 
(days) Estimate 95% CI  Median 

�( )Bm β  
Percentile 
95% CI 

Bias 
corrected 
95% CI 

Meningitis 15 – 25 2.488 1.099, 3.876  2.488 0.938, 4.116 1.075, 4.116 
0 – 14 0.269 -1.206, 1.745  0.221 −∞ , 1.494 −∞ , 1.571 
15 – 28 1.784 0.924, 2.644  1.798 0.702, 2.741 0.647, 2.718 

 
ITP 

29 – 42 0.995 -0.294, 2.205  0.932 −∞ , 2.092 −∞ , 2.130 
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Figure 1 �bias( )β for n = 50 against r, the ratio of the risk period to the observation 
period, for different values of the relative incidence (RI). 

 
 

Figure 2 �var( )β for n = 50 against r, the ratio of the risk period to the observation 
period, for different values of the relative incidence (RI). 
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Figure 3 Structure of the simulation study. 
 

 

Iterate 10,000 times 

Fix parameter 
values 

Generate 
exposure periods 

Generate 
marginal totals 

Distribute events across 
individual’s observation time 

Fit case series 
model 

Output 
results 
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Figure 4 The four effects of age at event used in the simulations 

 
 
Figure 5 Four distributions of age at exposure used in the simulations 
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Figure 6 Bootstrap distribution of relative incidence for aseptic meningitis and ITP 
data, by risk period. 
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Figure 7 Randomization and asymptotic distributions of the likelihood ratio statistic 
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