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Abstract 
 
We adapt the self-controlled case series method for long-term surveillance of vaccine 
safety using cumulative sum (CUSUM) charts. The CUSUM surveillance method we 
propose is applicable for detecting associations that arise in a short pre-determined 
risk period following vaccination. The performance of the case series CUSUM is 
investigated through simulations. We illustrate the method using retrospective 
analyses of influenza vaccine and Bell’s Palsy, and MMR vaccine and febrile 
convulsions.  
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1 Introduction  
 
Ongoing surveillance of vaccine safety is important, for two reasons. First, it is 
desirable to identify hitherto undetected problems or new problems, for example 
resulting from changes in the manufacture of vaccines in routine use. Second, it is 
useful to build up a picture of a vaccine’s safety profile over the long term, if only to 
accumulate evidence that the vaccine is safe. 
 
Methods in common use for pharmacovigilance include voluntary notification 
systems such as the Yellow Card system in the UK, run by the Medicines and 
Healthcare products Regulatory Agency, and the Vaccine Adverse Event Reporting 
System (VAERS) in the United States [1]. However, because notification of adverse 
events is usually triggered by the suspicion that they are related to the vaccine, the 
interpretation of data from such systems is not straightforward [2-4], nor can they be 
used convincingly to provide evidence of safety. 
 
In this paper we apply the self-controlled case series method [5] to obtain a 
cumulative sum (CUSUM) chart to monitor paediatric vaccine safety. This can be 
seen as a version of the sequential probability ratio test (SPRT), which we recently 
adapted for use with the self-controlled case series method [6]. The key difference is 
that whereas the SPRT is best used for monitoring a new vaccine, with the aim of 
deciding rapidly whether the vaccine is safe or otherwise with respect to events that 
cannot realistically be assessed in clinical trials, the CUSUM is appropriate for long-
term surveillance of a vaccine for which the presumption is that it is safe.  
 
The paper is arranged as follows. In section 2 we briefly give some background on the 
self-controlled case series method and CUSUM charts. In section 3 we describe the 
self-controlled case series CUSUM. We present some simulation results in Section 4, 
and applications in Section 5. We conclude with a discussion and recommendations in 
Section 6.    
 
2 Background  
 
2.1 The self-controlled case series method 
 
The self-controlled case series method, or case series method for short, provides an 
alternative to more established cohort or case-control methods for investigating the 
association between a time-varying exposure and an outcome event [5 - 9]. The 
method has been widely used in pharmacoepidemiology, particularly in the study of 
vaccine safety. The main features of this method is that it uses cases only, implicitly 
adjusts for fixed confounders, and in some circumstances it has high efficiency 
relative to the cohort method [7]. A modelling guide, including details of software 
implementations, may be found in reference [9] and from the self-controlled case 
series website: http://statistics.open.ac.uk/sccs.      
 
The basic idea of the method is as follows. Based on prior medical knowledge, or 
prior data, it is assumed that the incidence of the adverse event of interest is increased 
by a multiplicative factor  during a pre-specified time period after vaccination, 
known as the risk period. Outside the risk period, the vaccine has no effect on the 
incidence. Thus,  is the relative incidence associated with vaccination. Individuals 
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are observed over a pre-specified observation period, which is split up into successive 
intervals indexed by age group and level of vaccine-associated risk. The case series 
log-likelihood is derived by conditioning on the total number of events observed for 
each individual: it is this conditioning step that makes it possible to consider only 
cases, that is, individuals having experienced one or more events, vaccinated or 
otherwise. Conditioning also induces the self-matched property of the method 
whereby all fixed confounders, whether measured or not, are necessarily controlled in 
the analysis. The case series analysis provides estimates of the log relative incidence 
and of age effect parameters that determine how the incidence of the adverse event 
varies with age. 
 
2.2 The cumulative sum (CUSUM) chart 
 
The CUSUM procedure is a well-known sequential monitoring method, introduced by 
Page[10] and based on Wald’s sequential probability ratio test [11]. The CUSUM is 
used to monitor an ongoing process governed by some parameter . When all is well, 
 = 0 and the process is said to be in control. The basic idea of the CUSUM is to 
accumulate evidence against the null hypothesis  = 0, in such a way that evidence in 
favour of the null hypothesis is not allowed to build up. Thus, the CUSUM remains 
sensitive to changes in the process which might cause the value of  to increase. The 
accumulating evidence is represented by points on a time chart: once the trace crosses 
a pre-determined boundary, the process is deemed to be out of control and, if required, 
corrective measures are taken to bring it back under control, after which the 
monitoring sequence begins afresh.  
 
We shall only consider one-sided CUSUMs, that is, charts with a single boundary.  
Barnard [12] developed the V-mask form of the CUSUM to allow detection of either 
an increase or a decrease of the parameter  of interest; further extensions are 
discussed in [13]. The initial use of the CUSUM was primarily in industrial 
applications, though more recently, CUSUMs have been used in a medical context 
[14-23], to monitor disease incidence and institutional performance. In the latter 
context there is particular interest in concurrent monitoring of large numbers of units, 
which poses particular problems of false discovery [24-26].     
 
3 The case series CUSUM  
 
We consider acute adverse events, potentially associated with vaccination during a 
pre-determined risk period of duration d. The incidence of the events may vary with 
age, and this is allowed for by assuming that the incidence is constant within pre-
defined age groups.  Data on cases and vaccination are collected sequentially at time 
intervals of length s, typically every 6 months or every year; these are the monitoring 
intervals. At the kth analysis starting from time zero, all cases occurring between 
times (k-1) × s and time k × s are identified, and their vaccination history is 
determined.  
 
These cases are then used to obtain the case series loglikelihood ratio statistic k, for 
the test of H1:  = log(A), where A is the pre-specified relative incidence to be 
detected (A > 1), against H0:  = 0, corresponding to a relative incidence equal to 1. 
Two methods can be used to handle age effects. First, if a long series of historical data 
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are available, then age effects can be estimated accurately and these values substituted 
into the likelihood and treated as known, fixed values. This introduces bias if the age 
effects are estimated with error [27]. Alternatively, if the age effects are not known, 
they can be profiled out, and the loglikelihood is replaced by a profile loglikelihood in 
order to eliminate the age parameters at each monitoring interval. The procedure is 
described in detail in [6]. 
 
The CUSUM value Zk at step k is then defined as follows:  
 

Zk = max{Zk-1+ k, 0},  Z0 = 0. 
 
The CUSUM chart is obtained by plotting Zk against k. Note that the case series 
CUSUM is group-sequential, that is, it is updated at the end of each monitoring 
interval, rather than as new cases arise. This is essential since the case series method 
is retrospective. Note also that the case series CUSUM is risk-adjusted: all fixed 
confounders are necessarily adjusted owing to the fact that a case series likelihood has 
been used, and age effects have been allowed for by one of the two methods described 
above. These methods of risk adjustment have the major advantage of retaining a 
simple recursive form for Zk, unlike some other likelihood-based methods [13]. Also, 
under the null hypothesis, the increments k are independently and identically 
distributed. 
 
The CUSUM differs from the sequential probability ratio test (SPRT) [6]  because it 
has a holding barrier at zero rather than a lower absorbing barrier. A pre-determined 
upper boundary value h, known as the control limit, must also be specified. The 
process is deemed to be in state H0, or ‘in control’, at step k if Zk < h, and to have 
shifted to state H1, and hence be ‘out of control’, if Zk ≥ h. A CUSUM that exceeds 
the control limit is said to have ‘signalled’. This means that the chart has accumulated 
enough evidence to conclude that the value of  has increased. At this point, remedial 
action is taken, and the CUSUM is restarted from zero.  
 
If left running long enough, a CUSUM chart will eventually signal even when it is in 
control. The performance of the CUSUM is traditionally measured using the average 
time to the first signal, known as the average run length or ARL. Ideally, the ARL 
should be short when the process is out of control from the start (this is the ARL 
under H1, or ARL1), and it should be long when the process is in control (ARL under 
H0, or ARL0). In the context of vaccine safety surveillance, a low value of ARL1 is 
essential.  
 
4 Simulations 
 
The performance of the case series CUSUM depends on several parameters, including 
the underlying incidence of the adverse events, the age effect, the length of the risk 
period, the length of the monitoring interval, the choice of the design value of the 
relative incidence to be detected A, the choice of control limit h, the true relative 
incidence, and the annual incidence of the event . We investigate these dependences 
by simulation. 
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4.1 Design of the simulation study 
 
We used the same design for the simulation as used for an earlier study of the SPRT 
[6]; see this paper for further details. Briefly, we consider a single vaccine and 
adverse events arising within one year of age, which for definiteness we chose to be 
the period 0 to 364 days of age. We assumed that the distribution of age at vaccination 
in the population was proportional to a gamma density with mean 120 days, shape 
parameter 1.2 and probability of remaining unvaccinated at 364 days equal to 0.1. The 
variable parameters in the simulations were as follows: 
 
Design relative incidence A:   1.5, 2, 3, 5, 10 
Monitoring interval length s:  0.25, 0.5, 1 year 
Risk period length d:   1, 2, 4 weeks 
Annual incidence of the event : 25, 50, 100 cases per year 
Control limit h:   1, 2, 3 
Age effect:    constant, increasing, decreasing 
Age adjustment:   profiled out, effect known. 
 
The age effect was obtained by assuming that the incidence was constant within 
thirteen 28-day intervals, varying by the factor 1, 1.2, or 1/1.2 in successive age 
groups for the three scenarios considered. The two age adjustment methods 
correspond to profiling out the (unknown) age effect as described above, and 
substituting known values of the age effect (as might be obtained from a long run of 
historical data). For out-of-control simulations, the true relative incidence was set 
equal to A. Two hundred simulations were run for each combination of the 
parameters investigated; this is sufficient to explore the properties of the system and 
its dependence on the different parameters, without being overly computationally 
demanding. 
 
4.2 Results: baseline scenario 

The baseline scenario corresponds to the following combination of parameters: 0.5 
year monitoring interval, 2 week risk period, annual incidence 50 cases. The results 
for constant, increasing and decreasing age effects are shown in Tables 1, 2 and 3, 
respectively. As expected, both the average run length and the standard deviation of 
the run length (in and out of control) vary according to the age effect. Whatever the 
age effect, adjusting for it using profile likelihood methods has little impact on the 
average run length, compared to the situation in which the age effect is known 
exactly. Thus, this method of adjustment appears to be adequate. 

The relationship between the average run length in control and the alternative 
hypothesis value of the relative incidence, A, is a complex one: unbounded when A 
= 1, ARL0 decreases as A increases above 1, reaches a minimum, and thereafter 
increases to infinity. This is because the log likelihood ratio statistic k is a nonlinear 
function of A. On the other hand, the ratio of the average run lengths in and out of 
control, ARL0/ARL1, increases with A. As expected, ARL0, ARL1 and their ratio all 
increase as the control limit h increases. Note that the run lengths are all necessarily 
bounded below by the monitoring interval length. 
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4.3 Results: other scenarios 

We investigated the performance of the system with events of annual incidence 25 
and 100 cases. Figures 1 and 2 summarizes the results for 25 events expected per 
annum, with the age effect profiled out. As expected, average run lengths are longer 
than for the baseline scenario, and increase very rapidly with the control limit h. 
Conversely, for annual incidence 100 cases, average run lengths are shorter (data not 
shown).  

Next, we varied the risk period using 1 week and 4 weeks, compared to 2 weeks for 
the baseline scenario (data not shown). The average run lengths and standard 
deviations decrease as the length of the risk period increases. This is as expected, 
since the information about the exposure effect is greatest when the expected number 
of events in and outside the risk period are similar [28].     

We also studied the effect of varying the length s of the monitoring interval, using 3 
months and 1 year, compared to 6 months for the baseline scenario (data not shown). 
The dependence of the ARL on the length of the monitoring interval is complex. On 
the one hand, reducing s reduces the lower bound on the ARL and hence allows 
shorter values to arise. On the other hand, the ratio of the risk period to the 
observation period increases, and the proportion of cases vaccinated decreases when s 
decreases, both of which reduce the information about the vaccine effect.  

4.4 Surveillance of several vaccines 
 
So far we have only considered surveillance of a single vaccine. In practice, we might 
wish to monitor several vaccines, and/or several adverse events. Note that the number 
of vaccines and events to be monitored is not expected to be extremely large, but 
might perhaps include up to 5 or 10 different combinations. 
 
Monitoring multiple vaccine/event combinations (referred to as units) increases the 
rate at which spurious signals, also called false discoveries, occur. The relevant 
average run length in control is no longer the ARL0 for an individual vaccine, but the 
average time to the first signal from any of the units monitored, which we denote 
SARL0 (system average run length). (The average run length out of control remains 
the same as before, assuming that at most one unit is out of control at any one time, a 
reasonable assumption in the present context.) We obtained the values of SARL0 
using the fact that, for unadjusted CUSUMs, the distribution of the run length in 
control is approximately geometric, the approximation improving as ARL0 increases 
[29]. As the increments k for the profile likelihood case series CUSUM are 
identically and independently distributed, similar results apply here. Figure 3 
illustrates this, using some of the simulations presented in Table 2.  Goodness of fit 
tests yielded chi-squared values of 6.84 on 7 degrees of freedom (p = 0.45) for A = 2, 
h = 2, and 7.25 on 6 degrees of freedom (p = 0.30) for A = 1.5, h = 3. 
 
The relationship between the system average run length (in years) for r vaccines in 
control, and the ARL0 (in years) for each individual vaccine (assumed to be the same 
for simplicity), for monitoring intervals of duration s years is: 
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Table 4 shows the values of SARL0 for r = 1, 2, 5 and 10, based on the data from 
Table 1. Different parameter combinations produce results with a similar pattern and 
so are not presented here.  The more units are monitored, the shorter is the system 
average run length and the lower is the ratio SARL0/ARL1. The practical implications 
of these findings are discussed in Section 6. 
 
5 Examples  
 
In the following examples we present data in two contrasting situations. The control 
limit h = 3 is used throughout. 
 
5.1 Bell’s palsy and flu vaccine 
 
Concern about the possible association between Bell's palsy, an acute facial paralysis 
affecting the 7th facial nerve, and some influenza vaccine formulations, was raised in 
Switzerland in October 2000, after the introduction of an inactivated nasal 
formulation of the influenza vaccine. In this case series study, the relative incidence 
within the 31-60 day post-vaccination risk period was estimated to be 35.6, 95% CI 
(14.1-89.8). A similar analysis was undertaken using data from the GPRD on 2263 
episodes of Bell's palsy in the UK recorded from July 1st 1992 to 30th June 2005. The 
estimated relative incidence in the 3 months following parenteral inactivated influenza 
vaccine was not significant: RI =  0.92, 95% CI (0.78-1.08) [30]. 
     
We reanalysed these UK data using the case series CUSUM. We used a six month 
monitoring interval, 1-60 day risk period after any dose of influenza vaccine, with 
alternative hypothesis relative incidence A = 1.5 (Figure 4). In view of possible 
temporal confounding from the highly seasonal administration of influenza vaccine, 
the analysis was performed using a parametric case series model with 12 one month 
seasonal periods. Figure 4 shows that the CUSUM value remains less than 3 . Thus, in 
this retrospective analysis over 13 years, the CUSUM remains in control throughout. 
 
5.2 MMR vaccine and convulsions 
 
We reanalysed data from a study of convulsions after measles, mumps and rubella 
(MMR) vaccine in children in the UK [31]. Data were recorded in 418 children aged 
12-24 months. This age group was chosen to cover the period in which most MMR 
vaccinations are administered. The estimated relative incidence of convulsions in the 
6-11 day post-vaccination risk period using a case series analysis was 6.26, 95% CI 
(3.85-10.18) consistent with the known effect of the measles component of MMR 
vaccine.    
 
We reanalyzed these data as if undertaking prospective monitoring using the case 
series CUSUM. We used a six month monitoring interval. Figure 5 shows the 
CUSUM graph for the alternative hypothesis relative incidence A = 3 against a null 
exposure effect. The control limit h = 3 is crossed in the first monitoring interval, 
indicating  that the system is not in control. This is as expected: the association 



 8 

between convulsions and live measles vaccine in the second week after vaccination is 
well-known. In Figure 5 the CUSUM has not been reset: the monotone increase over 
subsequent monitoring intervals provides further evidence that the CUSUM is not in 
control. 
 
Since it is well-known that live measles vaccines cause convulsions with a relative 
incidence of the order of 2 – 4 , it makes sense to redefine the null hypothesis as 
corresponding to  = 3, say, and set the alternative hypothesis value A = 5, say, since 
interest resides not in detecting well-known associations but in finding evidence of 
changes for the worse. The resulting CUSUM (not reset) is shown in Figure 6. The 
chart provides some evidence that, after year 2, the in-control state  = 3 has shifted to 
 = 5. Also shown in Figure 6 is the CUSUM with  = 4 under the null and the 
alternative hypothesis value A = 6, which does not indicate a shift. This serves to 
illustrate an important feature with CUSUM charts, namely their sensitivity to the 
choice of hypotheses. Thus, if the true value of  when out of control is lower 
(respectively, greater) than A, then the average run length is greater (respectively, 
lower) than the ARL1 for the alternative hypothesis  = A.  
 
6 Discussion 
 
The discussion is structured in two parts. In the first, we review the strengths and 
weaknesses of the methods described, and briefly discuss some alternatives. In the 
second, we present some recommendations for vaccine surveillance systems, based on 
the results obtained above.  
 
6.1 Strengths, weaknesses and alternative approaches 
 
A long-term monitoring system based on the self-controlled case series CUSUM has 
all the advantages and disadvantages of the case series method. Its main advantage is 
that it uses only cases, and hence, like the SPRT for surveillance of a new vaccine [6], 
can be applied to data from population and hospital-based reporting systems such as 
the General Practice Research Database and Hospital Episode Statistics database. A 
further advantage is that it controls for fixed confounders, and hence allows for more 
robust evaluation of potential associations than methods based on spontaneous 
adverse event reporting systems. Finally, as we have shown, control of age effects via 
profile likelihood methods works well; further work is warranted to study the 
properties of this scheme, in particular to obtain approximations to the average run 
lengths. 
 
The weaknesses are those of the case series method [5,8], in particular the 
requirement that events should not influence subsequent exposures. A further 
limitation, specific to the use of the method in surveillance, is that the risk period 
should be short in relation to the monitoring interval. The method is thus wholly 
inappropriate for surveillance of reactions that may occur a long time after 
vaccination. 
 
Unlike surveillance of a new vaccine, in which it is important rapidly to establish 
evidence of safety as well as identify problems should they occur, long-term 
surveillance of an established vaccine is based on the strong presumption that it is 
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safe. Thus, the CUSUM provides a more appropriate framework than the SPRT [6].  
A further contrast with surveillance of new vaccines is that it might be desirable 
concurrently to monitor several vaccines or adverse events. As shown in Subsection 
4.3, surveillance of several vaccines greatly reduces the average time to a false signal, 
as measured by the system average run length in control, SARL0. This in turn will 
increase the false discovery rate (FDR), namely the expected proportion of signals 
that are genuine [32]. 
 
The problem of controlling the FDR when monitoring many units has been considered 
by several authors. Marshall et al [24] seek to choose h so as to control the FDR over 
a given time period. Others have applied the methods of [32] more directly to p-
values, derived as inverse average run lengths [25] or from the null distribution of the 
CUSUM statistic [26].  
 
In the setting considered in the present paper, obtaining such p-values is difficult and 
probably impractical, owing to the non-standard form of the case series log-
likelihood. We do not envisage very large numbers of items to be monitored, so that 
the problem of false discovery, while remaining important, is not quite as 
overwhelming as in some other applications. Also, we expect the number of out-of 
control units to be very low, so that the power advantage of FDR-control methods 
over Bonferroni adjustments is limited [32]. Thus, we propose a more ad-hoc 
approach, informed by simulations of SARL0 and ARL1 and the ratio SARL0/ARL1. 
This is to base the choice of control limit h on a system average run length in control 
that produces a manageable number of signals, while retaining a low value of ARL1, a 
key requirement of vaccine safety surveillance.  
 
A further limitation of the CUSUM described here is that it does not provide an 
estimate of the relative incidence . An alternative approach is to replace the profile 
likelihood under the alternative hypothesis  = A by a full maximum likelihood, 
yielding an estimate of  at each monitoring interval. A further option is to use 
generalized likelihood ratio methods [13]. These would yield more robust estimates, 
though at additional computational cost. However, upon signalling, the interpretation 
of estimates obtained sequentially in these ways is not straightforward. 
 
6.2 Recommendations 
 
We recommend the use of a 6-month or 1-year monitoring interval, with a preference 
for the latter when monitoring very rare events and when obtaining data is costly or 
time-consuming. We found that reducing the monitoring interval below 6 months 
provided little gain in sensitivity except for very common events. 
 
Age effects may be adjusted explicitly using profile likelihood methods. The 
simulations show that age effects do affect the results and hence should be controlled 
for, and that profiling them out incurs very little if any cost in timeliness of detection. 
 
The choice of alternative hypothesis relative risk to be detected A is important, and 
also tricky, as shown by the examples in Section 5. The simulations suggest that, for 
events occurring at a rate of 50 per year, the ARL1 for values of less than 3 can be in 
excess of 5 or even 10 years, depending on the age effect; such times to detection are 
far too long to be of any practical use. We therefore recommend that A is set no 
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lower than 3, unless the catchment area of the system can be expanded to ensure that 
events occur with an annual frequency of at least 100 cases. 
 
We also recommend that a control limit h ≥ 3 be used. The value h = 3 does not 
substantially affect the value of ARL1 for A  equal to 3 or more compared to h = 1 or 
2, but greatly increases the value of ARL0. With these choices, for adverse events 
occurring at the rate of 50 cases per year, the ARL1 for A = 3 is  about 2 years 
whereas ARL0 is about 70 years. 
 
The choices h = 3 and A = 3 may not yield an adequate surveillance mechanism for 5 
or more vaccines (or vaccine and event combinations), in view of the increased 
frequency of false discoveries: with these values, the SARL0 drops from 70.4 years to 
14.3 years as the number of units monitored increases from 1 to 5. In this case, the 
control limit h may need to be increased. Since new safety problems with established 
vaccines are uncommon, it is unlikely that more than one unit will be out of control at 
any one time. In this case, a Bonferroni-type adjustment is adequate. The control limit 
h to be used should be determined by simulation, with values chosen to reflect the 
frequencies and age distributions of the events to be monitored.  
 
The choice of the control limit h is to some extent determined by the action to be 
taken if the CUSUM signals. We envisage that, upon the CUSUM signalling,  further 
investigations will be undertaken, for example to review changes in vaccine 
manufacture, to implement more focused surveillance, and to conduct other 
epidemiological studies, in particular to estimate the relative incidence.  
 
 

References 
 
[1]. Chen RT, Rastogi SC, and Mullen JR, The Vaccine Adverse Event Reporting 

System (VAERS). Vaccine, 1994. 12: p. 542-550. 
[2]. Evans SJW, Waller PC, and Davis S, Use of proportional reporting ratios 

(PRRs) for signal generation from spontaneous adverse drug reaction reports. 
Pharmacoepidemiology and drug safety, 2001. 10: p. 483-486. 

[3]. Rothman KJ, Lanes S, and Sacks ST, The reporting odds ratio and its 
advantages over the proportional reporting ratio. Pharmacoepidemiology and 
drug safety, 2004. 13: p. 519-523. 

[4]. Waller PC, Van Puijenbroek EP, Egberts ACG, and Evans SJW, The reporting 
odds ratio versus the proportional reporting ratio: 'deuce'. 
Pharmacoepidemiology and drug safety, 2004. 13: p. 525-526. 

[5]. Farrington CP, Relative incidence estimation from case series from vaccine 
evaluation. Biometrics, 1995. 51: p. 228-235. 

[6]. Hocine M, Musonda P, Farrington CP, and Andrews N, Sequential case series 
analysis for pharmacovigilance. Tech. rept. available from 
http://statistics.open.ac.uk/sccs/JRSSA_submitted.pdf. 

[7]. Farrington CP, Nash J, and Miller E, Case series analysis of adverse reactions 
to vaccines: a comparative evaluation. American Journal of Epidemiology, 
1996. 143: p. 1165-1173 (Erratum 1998; 147:93). 

[8]. Farrington CP and Whitaker HJ, Semiparametric analysis of case series data. 
Applied Statistics, 2006. 55: p. 553-594. 



 11 

[9]. Whitaker HJ, Farrington CP, Spiessens B, and Musonda P, Tutorial in 
Biostatistics: The self-controlled case series method. Statistics in Medicine, 
2006. 25: p. 1768-1797. 

[10]. Page ES, Continuous inspection schemes. Biometrika, 1954. 41: p. 100-115. 
[11]. Wald A, Sequential analysis. 1947, New York: Wiley. 
[12]. Barnard GA, Control charts and stochastic processes (with discussion). 

Journal of the Royal Statistical Society, Series B, 1959. 21: p. 239-271. 
[13]. Lai TL, Sequential changepoint detection in quality control and dynamical 

systems (with discussion). Journal of the Royal Statistical Society, Series B, 
1995. 57: p. 613-658. 

[14]. Hutwagner LC, Maloney EK, Bean NH, Slutsker L, and Martin SM, Using 
Laboratory-Based Surveillance Data for Prevention: An Algorithm for 
Detecting Samonella Outbreaks. Emerging Infectious Diseases, 1997. 3(3): p. 
395-400. 

[15]. Grigg OA, Farewell VT, and Speigelhalter DJ, Use of risk-adjusted CUSUM 
and RSPRT charts for monitoring in medical contexts. Statistical Methods in 
Medical Research, 2003. 12: p. 147-170. 

[16]. Steiner SH, Geyer PL, and Wesolowsky GO, Grouped Data-Sequential 
Probability Ratio Tests and Cumulative Sum Control Charts. Technometrics, 
1996. 38(3): p. 230-237. 

[17]. Gallus G, Mandelli C, Marchi M, and Radeaelli G, On surveillance methods 
for congenital malformations. Statistics in Medicine, 1986. 5: p. 565-571. 

[18]. Nix AB, Rowlands RJ, and Kemp KW, Internal quality control in clinical 
chemistry: a teaching review. Statistics in Medicine, 1986. 6: p. 425-440. 

[19]. Tillett HE and Sepencer IL, Influenza surveillance in England and Wales 
using routine statistics. Development of 'cusum' graphs to compare 12 
previous winters and to monitor the 1980/81 winter. J.Hyg., Camb, 1982. 88: 
p. 83-94. 

[20]. Williams SM, Parry BJ, and Schlup MM, Quality control: an application of 
the CUSUM. British Medical Jounal, 1992. 304: p. 1359-1361. 

[21]. DeLeval, Marc R, François K, Bull C, Brawn WB, and Speigelhalter DJ, 
Analysis of a cluster of surgical failures. The Journal of Thoracic and 
Cardiovascular Surgery, 1994. 104: p. 914-924. 

[22]. Steiner SH, Cook RJ, and Farewell VT, Monitoring paired binary surgical 
outcomes using cumulative sum charts. Statistics in Medicine, 1999. 18: p. 69-
86. 

[23]. Ross G, Lampugnani L, and Marchi M, An approximate CUSUM procedure 
for surveillance of health events. Statistics in Medicine, 1999. 18: p. 2111-
2122. 

[24]. Marshall C, Best N, Bottle A, and Aylin P, Statistical issues in the prospective 
monitoring of health outcomes across multiple units. J R Statist Soc.A, 2004. 
167(Part 3): p. 541-559. 

[25]. Benjamini Y and Kling Y, A look at statistical process control through the p-
values. Tech. rept. RP-SOR-99-08. Tel Aviv University, Israel , 2005. 

[26]     Grigg O and Spiegelhalter D, The null steady-state distribution of the CUSUM 
statistic. Tech. rept.  

[27] Jensen WA, Jones-Farmer LA, Champ CW and Woodall WH. Effects of 
parameter estimation on control chart properties: a literature review. Journal 
of Quality Technology, 2006. 38(4): p. 349-364. 



 12 

[28] Musonda P, Mounia NH, Whitaker HJ, and Farrington CP, Self-controlled 
case series analyses: small sample performance. Computational Statistics and 
Data Analysis, 2007: p. doi:10.1016/j.csda.2007.06.016. 

[29]. Brook D and Evans DA, An approach to the probability distribution of cusum 
run length. Biometrika, 1972. 3: p. 539-549. 

[30]. Stowe J, Andrews N, and Wise L and Miller E, Bell's palsy after parenteral 
inactivated influenza vaccine. Human Vaccines, 2006. 2: p.110-112. 

[31]     Miller E, Andrews N, Stowe J, Grant A, Waight P and Taylor B, Risks of 
convulsion and aseptic meningitis following measles-mumps-rubella 
vaccination in the United Kingdom. American Journal of Epidemiology, 2007. 
165(6): p.704-709. 

[32]     Benjamini Y and Hochberg Y, Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J. R. Statist. Soc. B, 1995. 57(1): 
p.289-300.  



 13 

 
 
  Age effect profiled out Age effect known  Age effect profiled out Age effect known Age effect 

profiled out 
Age effect 

known 
h  A  Run length 

in control (years) 
Run length 

in control (years) 
 Run length out 

of control (years) 
Run length out 

of control (years) 
0

1

ARL
ARL

 0

1

ARL
ARL

 

  ARL0 Std. dev ARL0 Std. dev  ARL1 Std. dev ARL1 Std. dev 
1 1.5 

2 
3 
5 
10 

13.5 
8.71 
7.39 
9.42 
18.3 

12.6 
8.65 
6.91 
8.80 
19.1 

13.7 
8.73 
7.48 
9.61 
18.7 

12.7 
8.69 
6.97 
9.00 
19.5 

 4.64 
2.05 
1.13 
0.73 
0.55 

3.73 
1.53 
0.79 
0.38 
0.20 

4.60 
2.05 
1.11 
0.73 
0.55 

3.69 
1.54 
0.76 
0.40 
0.20 

2 1.5 
2 
3 
5 
10 

67.7 
32.7 
20.6 
23.4 
43.9 

67.2 
30.7 
20.8 
23.2 
40.2 

67.8 
32.8 
20.6 
23.5 
44.3 

67.5 
30.7 
20.8 
23.3 
40.6 

 10.2 
3.82 
1.62 
0.86 
0.56 

7.80 
2.77 
1.05 
0.51 
0.19 

10.1 
3.79 
1.61 
0.85 
0.58 

7.70 
2.77 
1.06 
0.51 
0.22 

3 1.5 
2 
3 
5 
10 

229.3 
109.3 
70.4 
68.3 

108.7 

208.6 
108.2 
60.4 
75.8 

108.8 

229.7 
109.6 
70.6 
68.5 
109.0 

208.9 
108.3 
65.5 
76.1 
109.1 

 16.2 
5.55 
2.20 
1.05 
0.57 

10.5 
3.90 
1.36 
0.57 
0.20 

15.9 
5.52 
2.17 
1.03 
0.58 

10.5 
3.93 
1.37 
0.57 
0.23 

 
2.91 
4.25 
6.54 
12.9 
33.3 
6.64 
8.56 
12.7 
27.2 
78.4 
14.2 
19.7 
32.0 
65.0 

190.7 

 
2.98 
4.26 
6.74 
13.2 
34.0 
6.71 
8.66 
12.8 
27.6 
76.4 
14.4 
19.9 
32.5 
66.5 

187.9 
 
Table 1. Six months monitoring interval, two weeks risk period, 50 cases per year and constant age effect.  control limith  , 

 relative incidence we wish to detectA  , 0ARL  average run length in control and 1ARL  average run length out of control .  
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  Age effect profiled out Age effect known  Age effect profiled out Age effect known Age effect 

profiled out 
Age effect 

profiled out 
h  A  Run length 

in control (years) 
Run length 

in control (years) 
 Run length out 

of control (years) 
Run length out 

of control (years) 
0

1

ARL
ARL

 0

1

ARL
ARL

 

  ARL0 Std. dev ARL0 Std. dev  ARL1 Std. dev ARL1 Std. dev 
1 1.5 

2 
3 
5 
10 

21.4 
11.3 
9.52 
8.22 
11.0 

21.0 
10.6 
8.60 
7.19 
8.90 

21.3 
11.2 
9.58 
8.42 
11.2 

21.0 
10.5 
8.70 
7.40 
9.07 

 7.24 
3.05 
1.42 
0.86 
0.58 

5.99 
2.36 
1.01 
0.53 
0.21 

7.14 
2.98 
1.40 
0.86 
0.58 

5.96 
2.36 
1.02 
0.55 
0.19 

2 1.5 
2 
3 
5 
10 

97.6 
47.6 
28.5 
24.8 
31.3 

90.4 
42.8 
29.9 
24.0 
28.0 

97.7 
47.6 
28.7 
24.9 
31.6 

90.6 
42.9 
30.1 
24.1 
28.2 

 16.5 
5.98 
2.29 
1.10 
0.64 

12.5 
4.28 
1.60 
0.71 
0.29 

16.2 
5.88 
2.26 
1.10 
0.65 

12.5 
4.25 
1.60 
0.74 
0.29 

3 1.5 
2 
3 
5 
10 

314.6 
152.4 
77.4 
68.9 
86.5 

328.7 
157.2 
75.3 
72.4 
88.3 

314.3 
152.5 
77.7 
69.1 
86.9 

328.4 
157.5 
75.6 
72.8 
88.7 

 24.6 
8.79 
3.59 
1.44 
0.71 

16.0 
6.08 
2.56 
0.86 
0.36 

24.1 
8.68 
3.52 
1.41 
0.70 

16.0 
5.98 
2.57 
0.88 
0.34 

 
2.96 
3.71 
6.70 
9.56 
19.0 
5.92 
7.96 
12.4 
22.5 
48.9 
12.8 
17.3 
21.6 
47.8 

121.8 

 
2.98 
3.76 
6.84 
9.79 
19.3 
6.03 
8.10 
12.7 
22.6 
48.6 
13.0 
17.6 
22.1 
49.0 

124.1 
Table 2. Six months monitoring interval, two weeks risk period, 50 cases per year and increasing age effect.  control limith  , 

 relative incidence we wish to detectA  , 0ARL  average run length in control and 1ARL  average run length out of control .  
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  Age effect profiled out Age effect known  Age effect profiled out Age effect known Age effect 
profiled out 

Age effect 
profiled out 

h  A  Run length 
in control (years) 

Run length 
in control (years) 

 Run length out 
of control (years) 

Run length out 
of control (years) 

0

1

ARL
ARL

 0

1

ARL
ARL

 

  ARL0 Std. dev ARL0 Std. dev  ARL1 Std. dev ARL1 Std. dev 
1 1.5 

2 
3 
5 
10 

13.7 
7.50 
7.09 
10.4 
26.8 

12.8 
7.05 
7.00 
11.5 
25.8 

13.7 
7.52 
7.18 
10.5 
27.1 

12.7 
7.04 
7.06 
11.5 
26.1 

 3.99 
1.58 
0.88 
0.66 
0.51 

3.57 
1.14 
0.58 
0.32 
0.08 

3.91 
1.55 
0.88 
0.68 
0.52 

3.51 
1.08 
0.60 
0.39 
0.09 

2 1.5 
2 
3 
5 
10 

53.2 
33.6 
22.2 
27.3 
62.5 

50.2 
31.6 
20.9 
24.8 
57.6 

53.1 
33.7 
22.3 
27.4 
62.9 

50.1 
31.6 
20.9 
25.0 
58.0 

 7.96 
3.31 
1.35 
0.72 
0.54 

6.05 
2.86 
0.86 
0.32 
0.14 

7.92 
3.29 
1.33 
0.74 
0.54 

6.14 
2.85 
0.91 
0.35 
0.14 

3 1.5 
2 
3 
5 
10 

164.1 
98.7 
61.5 
66.6 

130.6 

174.5 
89.5 
61.5 
60.6 

132.1 

164.3 
98.7 
61.6 
66.8 
130.9 

174.6 
89.4 
61.6 
60.7 
132.4 

 11.4 
4.38 
1.69 
0.86 
0.56 

6.82 
3.06 
1.00 
0.46 
0.16 

11.3 
4.36 
1.67 
0.86 
0.56 

6.61 
3.03 
1.00 
0.46 
0.16 

 
3.43 
4.75 
8.06 
15.8 
52.5 
6.68 
10.2 
16.4 
37.9 

115.7 
14.4 
22.5 
36.4 
77.4 

233.2 

 
3.50 
4.85 
8.16 
15.4 
52.1 
6.71 
10.2 
16.8 
37.0 

116.5 
14.5 
22.6 
36.9 
77.7 

233.8 
Table 3. Six months monitoring interval, two weeks risk period, 50 cases per year and decreasing age effect.  control limith  , 

 relative incidence we wish to detectA  , 0ARL  average run length in control and 1ARL  average run length out of control .  
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 1e  0SARL   1ARL   0 1SARL / ARL  
h  r = 1 r = 2 r = 5 r = 10  r = 1 r = 2 r = 5 r = 10 
1 1.5 

2 
3 
5 
10 

13.5 
8.71 
7.39 
9.42 
18.3 

6.88 
4.48 
3.82 
4.84 
9.28 

2.91 
1.95 
1.69 
2.09 
3.87 

1.59 
1.12 
0.99 
1.19 
2.07 

4.64 
2.05 
1.13 
0.73 
0.55 

2.91 
4.25 
6.54 
12.9 
33.3 

1.48 
2.19 
3.38 
6.63 
16.9 

0.63 
0.95 
1.50 
2.87 
7.03 

0.34 
0.55 
0.88 
1.63 
3.76 

2 1.5 
2 
3 
5 
10 

67.7 
32.7 
20.6 
23.4 
43.9 

34.0 
16.5 
10.4 
11.8 
22.1 

13.7 
6.74 
4.32 
4.88 
8.98 

7.00 
3.50 
2.30 
2.57 
4.62 

10.2 
3.82 
1.62 
0.86 
0.56 

6.64 
8.56 
12.7 
27.2 
78.4 

3.33 
4.31 
6.44 
13.8 
39.4 

1.35 
1.77 
2.67 
5.68 
16.04 

0.69 
0.92 
1.42 
2.99 
8.25 

3 1.5 
2 
3 
5 
10 

229.3 
109.3 
70.4 
68.3 
108.7 

114.8 
54.8 
35.3 
34.3 
54.5 

46.1 
22.1 
14.3 
13.9 
21.9 

23.2 
11.2 
7.27 
7.06 
11.1 

16.2 
5.55 
2.20 
1.05 
0.57 

14.2 
19.7 
32.0 
65.0 
190.7 

7.09 
9.87 
16.1 
32.6 
95.6 

2.84 
3.98 
6.49 
13.2 
38.5 

1.43 
2.01 
3.30 
6.72 

19.47 
Table 4. System average run length in control (SARL0) for 1, 2, 5 and 10 units, 
average run length out of control (ARL1), and ratio, for constant age effect profiled 
out, 0.5 year monitoring interval, two weeks risk period, and 50 cases per year. All 
run lengths are in years.  
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Captions for figures 
 

Figure 1. Average run lengths in control by control limit h (see text for details). Age 
effect constant: ----, increasing: ____, decreasing:…… . 
 
Figure 2. Average run lengths out of control by control limit h (see text for details). 
Age effect constant: ----, increasing: ____, decreasing:…… . 
 
Figure 3. Run length distributions based on 200 simulations (bar charts) and 
superimposed expected values from the geometric distribution (lozenges). Data from 
Table 2, increasing age effect profiled out. (a) A = 1.5, h = 3; (b) A = 2, h = 2. 
 
Figure 4. Bell’s palsy and flu vaccine. CUSUM graph for 1-60 day risk period and 
A=1.5. 
 
Figure 5. Convulsions and MMR vaccine. CUSUM for 6-11 day risk period, A = 3 
and h=3. The pairs (no. events in risk period, total no. events) are given for each 
monitoring interval. 
 
Figure 6. Convulsions and MMR vaccine. CUSUM for 6-11 day risk period and h=3.  
------ =3 vs A=5, ______ =4 vs A=6. 
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Vaccine 
Musonda et al 
Figure 2 
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Vaccine 
Musonda et al 
Figure 3 
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Vaccine 
Musonda et al 
Figure 4 
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Vaccine 
Musonda et al 
Figure 5 
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Vaccine 
Musonda et al 
Figure 6 
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