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Abstract

The self-controlled case series method (SCCSM) is anovel study design to investigate
associ ations between acute responses with transient point exposures (for example
vaccination). The method provides an attractive alternative to cohort and case-control
designs. The method is unusual in that it requires data only on individuals who
experience aresponse (the ‘ cases’). The method works as follows. Prior to the study a
post-exposure risk period is defined, which corresponds to the period in which
responses causally related to exposure are likely to occur. An observation period is
also defined, and individual s with responses arising within this observation period are
sampled. The data are then analysed using a Poisson model, conditiona on the total
number of events occurring for each individual. This conditioning ensures that

including only cases does not bias the relative risk estimator.

The self-controlled case series method has been used to good effect in many settings,
particularly in investigating putative associations between adverse events and
paediatric vaccines. However, so far only limited research has been undertaken on the
statistical properties of the method in finite samples, and virtually no work has been
undertaken on design issues. The method al so needs to be extended in various

directions, for example application in surveillance methods.

This thesis provides detailed investigations of these topics. To this end, expressions
for the asymptotic bias, variance and mean square error of the log-relative incidence
are derived. Simulation studies taking account of age are carried out to study small

and medium sample performance. Sample size formulae are obtained and validated



viasimulations, thus improving the design of self-controlled case series studies. The
method is extended to applications in surveillance and simulation studies are
conducted to evaluate this use of the method. The methods are illustrated using data

on intussusception and oral polio vaccine.
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Chapter 1

Introduction, background and literaturereview

1.1 Introduction

Research has traditionally been classified into two types: pure and applied. Philips et
al [1] have considered athreefold classification of research: exploratory, testing-out

and problem-solving, which applies to both quantitative and qualitative research.

Exploratory research is said to be the type of research that involves tackling a new
problem/issue/topic about which little is known, so the research idea cannot at the
beginning be formulated very well. The problem may come from any part of the
discipline; it may be atheoretical research puzzle or have an empirical basis. In this
type of research, aresearcher will need to examine what theories and concepts are
appropriate, developing new ones if necessary, and whether existing methodologies
can be used. Exploratory research involves pushing out the frontiers of knowledge in

the hope that something useful will be discovered.

Philips et a describe testing-out research as the type of research in which aresearcher
istrying to find the limits of previously proposed generalisations. In this type of
research, one might ask questions such as: Does the theory of previously proposed
generalisation apply in different situations? Can the theory apply in new technology?
Under what circumstances does the theory fail? What bits of the theory might need

extending? In this type of research, all sorts of questions can be tested, the amount of
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testing out to be done is endless and continuous. By doing this, in the process the
researcher will be able to improve previously proposed theories or generalisations by

specifying, modifying, extending and clarifying.

Asfor problem-solving research, the research starts from a particular problem in the
real world, and bring together all the intellectual resources that can be brought to bear
on its solution. The problem has to be defined and the method of solution hasto be
discovered. The person working in this research may have to create and identify
original problem solutions every step of the way. Thiswill usualy involve avariety of
theories and methods, often ranging across more than one discipline since real-world
problems are likely to be ‘messy’ and not soluble within the narrow confines of an

academic discipline.

With respect to the Philips et al research classification, this thesis can be described as
one of testing-out research, with some elements of problem-solving, as applied to a
statistical method in epidemiology called the self-controlled case series method. We
will begin by first describing what this method is, its advantages and limitations, its

application, and the aims of the thesis.

1.2 Background

The self-controlled case series method (SCCSM), or case series method for short isa

modified cohort method for estimating the relative incidence of specified eventsin a

defined period after a point exposure. While the method was originally developed to

Investigate associations between vaccination and acute adverse events [2, 3], it has
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subsequently been applied in other settings for example in pharmacoepidemiology
(Hubbard et al [4] and Hocine et al[5]). Becker et a [6] have independently derived
and applied the case series method in other areas of epidemiology. A step-by-step
account of the theory, applications, modelling issues are given by Whitaker et al [7].
The same paper by Whitaker et al describes how the method can be implemented in
various statistical software packages. The case series method in its semiparametric
form [8] can be applied to continuous exposures but in the thesis we shall consider

point exposures only.

1.3 Motivation

The self-controlled case series model was developed in order to analyse vaccine
safety record linkage data relating to measles, mumps and rubella (MMR) vaccination
and aseptic meningitis[9, 10]. For this study, episodes of aseptic meningitis arising
in children aged 1-2 years over adefined calendar time period were obtained from
laboratory and hospital records. The age and calendar time window determined by the
period of event ascertainment defines an observation period for each child. From now
onwards, the term ‘case’ refersto an individual who has experienced one or more
events of interest over hisor her observation period. Vaccination records were linked
to cases resulting in acombined data set that consisted of cases and their exposures.
The difficulty with such data setsis that usually they do not comprise accurate
denominators. Furthermore, it may not be wholly clear from what population the
cases arise and most likely the catchment areas of the hospitals from which the cases
were obtained may not be clearly defined. Thus using methods such as cohort and

case-control studies which are population based methods would require ingenuity,
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especially since vaccine coverage in the population is unlikely to be uniform. If
answers are required quickly about a possible association between an event of interest
with the vaccine exposure, employing a cohort study may not be agood idea as it may
take along time, it would be very expensive to undertake and would require alarge
sample size. The self-controlled case series method was developed to deal with such
difficulties. In the MMR and convulsions data set, a positive association between
vaccination with the Urabe mumps strain and aseptic meningitisin the period 15-35
days post-vaccination was confirmed, and the composition of MMR vaccines used in

the UK was changed [9, 10].

The self-controlled case series method will be described in technical terms in chapter
2. Briefly, aretrospective Poisson cohort model is specified, and the case series model
is derived from this by conditioning on the total number of events experienced by

each individual in the observation period.

1.4 Advantages and limitations

The following are the main advantages of the self-controlled case series method. The
method uses cases only and provides consistent estimates (as the number of cases
becomes large) of the relative incidence. It controlsimplicitly for all fixed
multiplicative confounders, that is, confounders that act multiplicatively on the
baseline rates and do not vary (or not vary much) with time over the observation
period, such as variables relating to genetics, location, socio-economic status, gender,
individual frailty, severity of underlying disease, etc. Age or temporal variation in the

baselineincidenceis controlled for in the model. Further under certain circumstances,
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the method has high efficiency relative to the retrospective cohort method from which
it is derived by conditioning [2]. Assembling the required datais much more likely to

be easier in self-controlled case series method than cohort or case-control studies.

Like any other method, the self-controlled case series method has limitations which
we now give. The most restrictive limitation is that the method requires that the
probability of exposure is not affected by the prior occurrence of an outcome;
sometimes this condition may not be fulfilled. For non-recurrent events, the method
works only when the event risk is small over the observation period. The method does
not produce estimates of absolute incidence, only estimates of relative incidence. A
further assumption is that the observation period is independent of the timing of
events. A less severe limitation of the method is that it requires variability in the time
or age of the event: if al events were to happen at exactly the same age, which isvery

unlikely but not impossible, then the method would fail.

1.5 Why usethe self-controlled case series method

Investigations of suspected or hypothesised associations of adverse outcomes with
transient exposures, such as vaccination, usually require epidemiological studies such
as cohort studies and case control studies. A disadvantage of a cohort study isthat for
rare events it has to be very large to achieve sufficient power. This may not be
practical and can be very expensive. Sometimes researchers have got round this
problem by reconstructing large retrospective cohorts (Ray et al [11] ) using data sets
assembled for other purposes. Case control studies require smaller sample sizes. The

main disadvantages with case control studiesis that they are more prone to selection
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bias, recall bias, and ascertainment bias (Altman [12]). Confounding by variables
related both to avoidance of vaccination and to the outcome of interest is a major
problem for both cohort and case-control studies as noted by Farrington et al [3]. For
example Fine et a [13] found that parental education, ethnic group, age of the mother,
maternal smoking, birth weight, evolving neurological disorders, and conditions
predisposing to seizures are related to both vaccination and to sudden infant death
syndrome or encephal opathy and hence may be confounding factors. Both the cohort
method and case-control method are data-intensive, involving large cohorts or careful
selection and matching of controls [14]. The self-controlled case series method aspires
to control for fixed confounders by using cases only. This helpsto reduce the data

collection effort, and concentratesit on the cases.

Observations of clustering or troughs of events shortly after exposure leads to
speculation about associations with exposure. There are several methodological
difficultiesinvolved in carrying out epidemiological studiesto monitor such
associations. Such studies are prone to many biases, for example, Fine et al [13] found
that there is often differential ascertainment of cases in recently vaccinated and
unvaccinated individuals and differential vaccination rates in individuals at higher or
lower risk. Both would lead to biasin cohort and case control studies, whereas case
series studies may escape bias from the latter. The cohort method is based on
comparisons of incidence rates for person-time aggregated both across and within
individuals. But the self-controlled case series method removes the contribution of
comparisons between individuals, focussing attention on event rates in different
periods within each individual’s observation time (Farrington et a [3]). For this

reason, individuals who experience no events contribute no information about the
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associ ation between vaccination and outcome. Such individuals can be ignored
without introducing any bias. On the other hand individuals who experience one or
more events do contribute information on the risk period and age group in which the
events occurred. The self-controlled case series method thus combines aspects of the
case control and cohort methods, using retrospectively ascertained vaccination
historiesin cases to estimate the relative incidence in different intervals after

vaccination relative to a control period.

1.6 Other case-only methods

Looking at cases only to detect risk factors for diseasesis not new. Various studies
have been conducted in which cases only are used, for example, aMarkov chain
method using cases only was used by Aalen et a [15] and a similar method modified
as survival analysis was used by Prentice, et a [16]. However, it has been argued [ 2,
8] that the methods of Aalen et a and Prentice et al give avalid test for no association
but do not yield readily interpretabl e effect estimates. Another use of cases only can
be seen in the case-crossover model developed by Maclure [17]. Maclure’ s method
resembles a case-control method with referents selected from the case’ s own history.
It has been argued [18] that although the case-crossover method is self-matched, it
only yields consistent estimates when the distribution of exposure in case and control
timeintervalsis exchangeable, in particular implying stationarity of exposures. There
are several variants of this method, reviewed by Greenland [19], and the case-
crossover approach has been used in many settings [20]. Another method in which
cases only are used is that of Feldmann [21]. In this method, a constant base-line

incidence is assumed. Feldmann’s method does give consistent estimates, though it is
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only approximately self-matched for rare events. The earlier approaches of using
cases only have characteristics which the self-controlled case series method
incorporates, in particular, it coincides with Feldmann’s method when the disease is
rare and the base-line incidence is constant. The self-controlled case series method is
similar to Prentice’sin that it al'so controls for age, it issimilar to Maclure' sin that it
also controls for fixed confounders. The main difference between the case series
method and the method of Maclure isthat it is derived from the same statistical model
as acohort study design, and hence can handle non-exchangeable exposures and in
particular controls for age effects. Furthermore in this method one does not need to
specify the prior probabilities for exposure as required in some other case-crossover
designs (Marshall et al [22]). Smeeth et al [14] describe the advantages and

disadvantages of case-control and case-only study designs.

1.7 Wherethe saf-controlled case series method has been used.

This method has been used in various situations, but the main area it has been used is
in modelling adverse events in vaccine studies. Table 1.1 below is adapted from
Whitaker et al [7] which documents published applications of the case series method.
A review of applications to vaccine safety is given by Andrews[23] and aso by
Farrington [24]. Independently, Navidi [25] proposed what is essentially a case series
method, with time-varying exposures, for application in studies of air pollution. This
method is described as a bi-directional or ambidirectional case-crossover method. The
case series version of this method is that in which the entire observation period is used

as controls. A similar approach has also been discussed by Lumley and Levy [26].
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Farrington and Whitaker [8] describe a generalisation of this approach, in which
residual seasonality is controlled.

Table 1.1 Studies using the case series method

Exposure Outcome Reference
DTP vaccine Febrile convulsion [9]
MMR vaccine Febrile convulsion [9]
MMR vaccine Idiopathic thrombo-cytopenic purpura [9, 27]
MMR vaccine Aseptic meningitis [9, 28]
MMR vaccine Autism [29, 30]
MMR vaccine Invasive bacterial infection [31]
MMR vaccine Gait disturbance [32]
Influenza vaccine Asthma [33, 34]
Influenza vaccine Bell’s palsy [35]
Oral polio vaccine Intussusception [36, 37]
Oral rotavirus vaccine Intussusception [38]
DTP, MMR, HBV, HIB,
OPV vaccine Wheezing [39]
Antidepressants Hip fracture [4]
Antidepressants Myocardial infarction [40]
Long-haul air travel V enous thromboembolism [6]
Influenza vaccine Any medical visits [41]
Common vaccines and infections Myocardial infarction and stroke [42]

DTP=diphtheria, tetanus, pertusis

MM R=measles, mumps, rubella

HBV =hepatitis B vaccine, HIB=haemophilias influenza type B
OPV=oral polio vaccine

A comparative evaluation of the self-controlled case series method has been
undertaken by Farrington et al [3] and also by Glanz et a [43]. In Farrington et a’s
comparisons, estimates of the relative incidence of febrile convulsions associated with
Measles Mumps and Rubella (MMR) vaccine were obtained using the case series
method, the case-control method and the cohort method. Theoretical arguments about
the efficiency of the self-control case series method were presented. Overall the
findings were that the self-controlled case series method produced results similar to
the cohort method, whereas the 1-1 matched case-control estimates had wider
confidence intervals reflecting the lower power of the method for a given number of

cases. In conclusion Farrington et al [3] noted that the cohort study remains the
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“ideal” design for the study of adverse reaction to vaccines, and should be used
whenever feasible. However, for studies of rare adverse events or for routine
surveillance purposes, large-scal e cohort studies may be costly, impractical, or prone
to confounding. In such circumstances, the case series method provides a powerful

and practical aternative to cohort and case-control studies.

1.8 Issuesto explore and outline of thethesis

The self-controlled case series method is relatively new, and some statisticians and
epidemiologists are naturally sceptical. This scepticism isabarrier to its use, in spite
of its benefits such as good power, reduced confounding and practicability. Testing-
out and extension of the method will hopefully contribute to a better understanding of
the method amongst the epidemiological community as awhole, including the
pharmaceutical industry. In this thesis the following issues will be explored:

e Further statistical properties of the method

e Evaluation of its small sample performance

e Improvement in the design of self-controlled case series studies by obtaining

and validating sample size formulae

e Extending the method’ s application to prospective surveillance

We now give the outline of the thesis. In chapter two, we present the case series
method, and derive some expressions of its theoretical properties. The case series
method involves fitting a particular log-linear model using maximum likelihood.
Thus, the asymptotic performance of the method is guaranteed by statistical theory.

Expressions for the asymptotic bias, variance, and the asymptotic mean square error
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of the estimate of relative incidence are derived. A graphical study of the bias,
variance and asymptotic mean square error are given. In chapter three we present
extensive simulations to study the validity of asymptotic results in finite samples
under different situations. We describe how the simulations were carried out. Results
from the simulations are given starting with what we call the standard scenario with
varying number of cases and arange of true relative incidences. We then explore
different risk periods, the effect of age, and different distributions of age at exposure.
We aso investigate indefinite risk periods and the presence of unexposed cases. We

explore the effects of age using several contrasting scenarios.

Chapters 4 and 5 concern the estimation of sample sizes for case series studies. So far
little work has been done on the design of self-controlled case series studies. Sample
size formulae are devel oped and validated using simulations. The impact of age
effects on power and sample size are studied. In Chapter 4, we study an earlier
published sample-size formula[3]. We find that this formulais not accurate, and
investigate severa alternative approaches. In Chapter 5, we extend one successful

approach to take account of the effect of age ( Musonda et al [44]).

Chapters 6 and 7 relate to applying the self-controlled case series method in a
prospective surveillance context. Theissue of interest is how to apply the self-
controlled case series method, which is a retrospective method, in a prospective way
so that possible adverse outcomes with a new vaccine (or several vaccinesin routine
use) can be detected early so that remedial action can be taken. This constitutes a new
application of the case series method. Following Wald [45] and Page [46] we use the

sequential probability ratio test (SPRT) and cumulative sum (CUSUM) based on the
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self-controlled case series method so as to apply the self-controlled case series method
in a prospective situation. These approaches along with extensive simulations to

demonstrate their performance under different situations are presented.

In chapter 8 we analyse a data set on oral polio vaccine and intussusception, provided
to us by GlaxoSmithKline Biologicals (Belgium). This study was undertaken in
preparation for field trials of anew oral rotavirus vaccine. These data require some
ingenuity in how one applies the self-controlled case series method owing to
censoring of exposure histories. We describe how to analyse such data. We go on to
discuss how the findings of the thesis throw light on the results, and how they may
inform the design of future studies and surveillance programmes based on the case

series method.

The conclusions of the thesis and its contribution to knowledge about the self-

controlled case series method are presented in chapter 9.
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Chapter 2

The self-controlled case series mode

2.1 Introduction

In this chapter we introduce some notation, present the self-controlled case series
model and derive some of its large sample properties in asimple setting. We present
the likelihood in section 2.2. In section 2.3 we study the asymptotic bias of the
relative incidence estimator. In section 2.4 we present a graphical study of the
asymptotic bias. The asymptotic variance of the estimator is derived in section 2.5. In
section 2.6 we present a graphical study of the variance. We derive the asymptotic
mean square error (AMSE) of the relative incidence estimator in section 2.7 and
present a graphical study of AMSE in section 2.8. We conclude the chapter with a

brief discussion in section 2.9.

2.2 The salf-controlled case series model

The self-controlled case series method is a conditional cohort method for estimating
the relative incidence of specified eventsin a defined period after a point exposure. In
this method, first an observation period is defined. Time within the observation period
isclassified as at risk or as control timein relation to point exposures that are
regarded as fixed. We then condition on the number of events experienced by each

individual over the observation period. As mentioned in chapter one, the method
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allows valid inference about the relative incidence of eventsin risk periods relative to

the control period, using data on cases only.

We now derive the general form of the likelihood of the self-controlled case series
model. The pictorial configuration (Figure 2.1) below will help to understand the

general form of the likelihood described.

Cor_1tro| Ris.k Control period k=0
Period Period
k=0 l k=1 l . \

A
a1 Agegroup 1 (j=0) Agegroup 2 (j=1) bi
Vaccinated at this point Event diagnosed at
within observation period this point within

observation period

Figure 2.1 Possible case series configuration

In Figure 2.1 we see a possible configuration in which an observation period (a,h] is

defined within which an individual i was exposed (vaccinated) and arisk period (red
line) is defined shortly after the exposure. It is possible to have several risk periods
depending on prior knowledge of what time intervals are important. For example
Griffin et a [47] assumed that the effect of DTP on febrile convulsions or

encephal opathy had risk periods of 0-3, 4-7, 8-14, and 15-29 days after any dose of

DTP. The observation period is further divided in age groups, in Figure 2.1 there are
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two age groups. Aswith risk periods, it is possible to define severa age groups. The
period outside the risk period is known as the control period. In Figure 2.1 it
comprises of the period before vaccination, a period shortly after vaccination, and a
period after the risk period. The event in this case was diagnosed some time after the
risk period in age group 2, but could have occurred anywhere within the observation
period. The observation period and the location of the risk period within it will

generally vary between individuals.

In general, we assume that events arise within individuals as a non-homogeneous,
age-dependent Poisson process. In what follows, a proportiona incidence model is
used to describe the relation between vaccination and the outcome of interest

(Farrington et a [3]).

Let individuals be indexed byi =1,2,...,N, age groups be indexed by j=0,1,...,J -1
(O denoting the reference age group) and the risk periods be indexed by

k=0,1...,K—1 (0 denoting the control period).

Further suppose we let the symbols 4, ,€,,,n,, respectively denote incidence, length

of time at risk, and number of events experienced by an individual i, in age group |

and risk period k during the observation period (&,h ]. The log-linear model [3]
In(4,)=¢ +a; + 5,

is used to parameterise the incidence of an event for an individual effect ¢ , age effect
«;, and exposure effect f, (with a, = 5, =0) . Thus the incidence function during

the baseline period issimply 4, = exp(¢) . The Poisson probability model is given



—A r

e "xA
by: Pr[r]= o

wherer =0,1,2,... and for the underlying cohort model,

My i POiSSOﬂ(/?“k qu‘k) :
For the cohort model, ¢ = x"y for fixed covariates X, and the Poisson log-likelihood

kernel (whichisequal to thelog-likelihood up to an additive constant) is

(o (a, B, V)ZZZ%()QTY‘F“] +ﬁk)_ZZeXp()§TY+0{j + B )8

The self-controlled case series model is derived from the cohort model with the ¢
unrestricted by conditioning on the n , (the total number of events experienced), thus

giving a product multinomial distribution as described by McCullagh and Nelder [48].

So the log-likelihood kernel for the self-controlled case series model is

exp(er; + f3,)8;,
K(a,ﬂ)=2%r\jk|09 > exp(ey +,B?Q .

We can see from above that the individual effects ¢ = x'y cancel out. Thisis because

incidence rates are contrasted within the same individual’ s person-time, so that, in this
sense, the method is self-controlled. Thus, provided the model is correct, inferences
from a case series analysis cannot be confounded by fixed multiplicative individual
effects, which might include genetic factors, location, socio-economic status, sex,
underlying health status, individual frailty, and so on [7]. Individual effects can
nonethel ess modify the exposure effect but this can be modelled by including suitable
interaction terms. Note that self-control appliesto fixed covariates only and not age or

time-dependent covariates.

In much of what follows we shall only need the log likelihood in the following

simplified situation. We suppose that there are no age effects, and that all individuals
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are observed over the same observation period, comprising two adjacent periods of

duration g (therisk period) and g, (the control period). Suppose that all individuals
are vaccinated at the start of period € and subsequently at increased risk during this
period. Suppose that in asample of n events, n, occur in period €, and n, in

periode withn=n,+n,. Let the ratio of the risk period to the observation period

ber , that is,r = eo?rel . Usually the risk period and the observation period will be

specified in advance. However, only their ratio r isrequired. Let p bethereative

incidence € (so that 8 =log(p)).

In this simple situation the log-likelihood kernel is equal to:

((B) =np-nlog(ee’ +8,)

Note that thisis the same log-likelihood kernel as for the binomial model
n 0 B(n, p)

with

_ g
P e re

The maximum likelihood estimator 3 of /3 is obtained by setting 3_2:0' that is,

o/ ee’

— —-n - =0

B e e

giving

,;:mg(m/el}andﬁ:eﬁ:m/el_
N,/ e N,/ e
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The likelihood ratio statistic for thetest of H,: 8 =0 for thissimplified situation is

then D= Z[E(B)—E(O)}: Z[n]/}—n{log(eleﬁ+eo)—log(el+e0)}},

where [3’ IS the maximum likelihood estimator.

2.3 Derivation of the bias of the estimator ,B

In this section we derive an expression of the asymptotic bias up to the second order

of the estimator of the relative incidence in the simple situation described in the
previous section when there are no age effects and al individuals have the same

observation period. The maximum likelihood estimator may be written as

gl

Let the function f(x)=1log (n_xxj +log [%)

Thisisequivalent to:

el .
&+&

f (x) =log(x)—log(n- x)+|og(l_7rj, wherer =

The random variable X isthe number of events occurring in the risk period. This

follows abinomial distribution

X [J Binomial (n, p)

&p ___ pPr
e+pe (1-r)+pr

where p=

It follows that the expectation of X is E(X)=x=np and f (x) =log(p) = S.

By Taylor expansion of = f (X)) about u , we get:
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A

B= 1)+ (X =) P +5(X =) 1)+ (X =) 1)
1 4 civ :
+£(X—,u) f"(u)+residue (2.1

Taking expectations of the above expression, we have:

P 1 ” 1 3w 1 4 iv .
E(,B):,B+§var(X)f (,u)+EE(X—,u) f (ﬂ)+§5(x—u) f V(1) + residue.
Now we have:

f’(x):1+ 1 __n ’
X n—=x X(n—x)

sof’(u) :iwith g=1-p;
npq

3 3 3 3
f”’(x)=£+ 2 _,X¥+(n-x) sof”’(u)zg{erq};

fiv(x)zz{if_l_ 3 }ZG{X“_(n—x)“] SOfiV(Iu)ZE{ p4_q4}:£(p—q)(p +q )

X (n_X)4 X4(n_x)4 r.]4 p4q4 n4 p4q4
We know that for abinomial, (Johnson et al [49]), the variance, the third and fourth
moment about the mean are: npg, npg(q— p), and npg[1+3pg(n—2)] respectively.
Moments of higher order contribute termsthat are O( n‘3) at most. Replacing these

valuesin (2.1) above and only considering terms of order up to O(n™*) we have:

E(ﬁ):mnpqg{p—q}npq(q—p)g{p3+q3}+3n2p2q2£(p—Q)(p2+q2)

+0(n®
2 n2 p2q2 6 n3 p3q3 24 n p4q4 ( )
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Simplifying, we get the asymptotic bias of £ up to second order intermsof p and q

as given below:

E(’g)_ﬁ:i(p—Q) _2(IO Q){ (07 +qz)_(p3;fq3) Lo (22)

2n pqg n* pq

For interpretation purposes, we substitute

pr € _ 1-r
(1-r)+pr (1-r)+€r’ q_(l—r)+e/’r ’

and note that p°+q° = (p+q)(p* — pq+9°) = (p* - pg+0°)

p:

thus

E(B)- = (re" -1 r))(—+%}

(re” +1-r)
(eﬁ) (1-r)*

(reB (1-n) [S(reﬂ)2+4reﬁ(1—r)+5(1—r)2}+0(n‘3) (2.3)

12n?

Note that in (2.3) above, the expression —(re" 1- r))(i+ijlsthe
2n rore?

asymptotic bias up to the first order. We can further factorise (2.3) above to get the

following expression:

E(ﬁ)—ﬂ:z—];](re/j —(1—r))($+%j{l+m[5(reﬁ)z+4reﬂ(1—r)+5(1—r)2]}

+0(n™®) (2.4)

We can seein (2.4) above that the expression

1 2 2 .
{1+W[5(reﬁ) +4re’ (1-1)+5(1-r) }} is always greater than 1. So the

sgn([E(,B)—,BJ) :sgn([re/’ —(1—r)}) and |2nd order bias| > [1st order bias|. Both

the first and second order asymptotic bias are zero whenre” =1—r . This occurs when
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the risk period is chosen such that the same (expected) number of cases occursin the
risk period as outside it. Further we note that the asymptotic biasis negative when

e’ <1_Tr and positive when e’ >1_Tr'

2.4 Graphical study of the asymptotic bias

In this subsection, we explore the behaviour of the asymptotic bias (2.4) graphically.
Note that an estimate with small bias and small variance is generally preferable to one
with zero bias and large variance [50]. In addition to exploring the behaviour of the
bias of ,B , we shall later explore under what circumstances the estimator from the
self-controlled case series method has small bias and small variance. Figure 2.2 (a),
(b), ... (f) below shows the asymptotic bias of the first and second order varying with
theratio of the risk period to the observation period at fixed relative incidence of 0.5,
1, 2, 5and 10. We present the asymptotic bias for n=10, 20, 50, 100 cases,
asymptotically asn — o the biasis zero (explored but results not shown) when there

arealot (n > 100) of cases.
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Figure 2.2 First and second order asymptotic bias varying with the ratio of the risk
period to the observation period.
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Similarly Figure 2.3 (a), (b), (c) and (d) below shows the bias varying with relative
incidence at fixed ratios of the risk period to the observation r =0.1,0.2,0.5 and 0.9.
We can see that the bias decreases as one would expect with increasing sample size.
There islittle difference between the first order bias and the second order bias except
for small sample sizes (e.g, n=10). The asymptotic biasis greatest for small ratio of
risk period to the observation period (ratio less than 0.1 Figure 2.2 (a), and (b)) and
long ratio of risk period to observation period (ratio greater than 0.9, Figure 2.2 (d),
(e), (f) ). Varying the relative incidence with fixed ratio of risk period to observation
period (ratios 0.1, 0.2, 0.5, and 0.9) and fixed number of cases (n=10, 20, 50 and 100)
there is an appreciable bias when the relative incidenceislessthan 1 and r <0.5

(Figure 2.3. (a), (b), (c)) and for large relative incidenceswhen r = 0.9 (Figure 2.3 d).
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Figure 2.3 First and second order asymptotic bias varying with relative incidence

2.5 The asymptotic variance of B

Farrington et al [3] found the variance of an estimator ,B up to thefirst order in the
simplified situation described in section 2.3. In this section, we extend the cal cul ation
up to the second order. The variance of ,B up to the second order is derived as
follows.

Squaring both sides of (2.1) and simplifying, keeping powers up to order 4, we get:

B = () + 21 () (X = 1) £ () + (X = )| F ) 1)+ (1)) |+

3 - , » 4 iv ’ V4 f” 2
(X -u) Ef(ﬂ)f (u)+ 1) 1 (u)}(x—ﬂ) {f(ﬂ)lfz W, Tt )., ( ;ﬂ))

+ residue
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From above, we know f (1) = /. Substituting this value in the expression above we
get:
B = B+ 2B(X - 1) /(@) +(X = )’ B () +(£' ()" |+

, i ) ., . iv 4 ” f” 2
(X | 28170+ ) 10 [+ (X~ ) {'Bflz(”)“(”)gf . ()

+ residue
Taking expectations of both sides:

E(5?)= B2 +var ()| B17(u) + (1 ()" |+

E(X-u)’ Eﬂf”wn f'(mf”(m}

+E(X_ﬂ){ﬂf”(u)+ f’(u)f"(u)+(f”(f))2

+residue
L, 1) |

Substituting for the other values we have:

g (P*+d®) 1 1
n* pq’ p’q npg n”p’q

p2\ _ p2 ﬁ(p—q) 1 ) _
E(A)=p +np(1{ 2 +(npq2}+npq(q p){gns i3t ———(p-a)

)
+3n’p’q’ ﬁxgx(p—q)(p2+q2)+g 1 p3+q3+ 1 (p_q)z
12 n4 p4q4 3 npq n3 p3q3 4n4 p4q4
Simplifying the above expression we get:

E(ﬁz)=ﬂ2+1+ﬁ(p_q)—(p_q)2+2ﬁ(p_q){ 1(p3+q3)+%(p2+q2)}

]+O(n3)

npq 4an2 pzqz n2 pzqz _5
2(p*+0° )
—(2 — )+O(n3)
n-pq

The asymptotic variance of ,B isgiven by:

va(ﬁ) = E[ﬁz] —[E(,B)T . We know from above (2.2) that

E(,B):ﬁ+2—1n( p[;qq) +n—12(zz_qg)h( p2+q2)—(p—;rq)}+0(n3). Squaring both
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2,22 2 p2q2 4

N\ T 2ﬂ(_)(_)22ﬂ(_)322(p3+q3)
[E(/jﬂ =p += ppqq +4s pqq 7 P—4 {—(p +q )— 3

The asymptotic variance up to the second order is given by:

3) = e[ 3 AF_ 1 (p-a) 2(P+d)
()= e[ ][] = -2 2 D) oy
_ 1 _(p-a) 2(P-pa+q)

2 ~2~2 2 ~2~2

“npq  2n?pZq n?pq

+0(n®)

Substituting the full expressions for p and q in the above we get:

N 1 1 1 ((efr=@-n)(er+1-r) ’
Var(ﬁ)_ﬁ<eﬁr+l_r)(l—r+eﬁrj_2n2{ e’r(1-r) J

(e"r +1—rj2 (e’r +1—r)2 J{eﬂwl—rj2

1-r T (1-r) e’r o) @3)

2
n?

Note from (2.5) above, the expression 1(eﬁr +1- r)(i+iJ isthe first order
n 1-r  €r

variance as was found by Farrington et a [3]. Note further that (2.5) can be factorised

to give (2.6) below:

. &r+1-r)
Var<'8):%(eﬁr(1—r))

3(er) —2¢/r (1-1)+3(1-r)°
2ne’r (1-r)

} o(n™®) (2.6)

We see that the expression

3(er) —2¢/r (1-1)+3(1-r)°

1+ 2ne’r (1-r)

} Is greater than 1, hence the second order

variance is always greater than the first order variance. The asymptotic varianceis

minimised whene’r =1—r . Thiswill beillustrated in the next section graphically.
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2.6 Graphical study of the asymptotic variance of ,B

Figure 2.4 and Figure 2.5 below show how the asymptotic variance up to the first
order and second order varies with the ratio of the risk period to the observation
period and with the relative incidence at fixed sample sizes. Just asin the graphical
study of the bias, we explored the behaviour of the asymptotic variance for
n=10,20,50, and 100. We fixed the relative incidences at 0.2, 0.5, 1, 2, 5 and 10 and
then varied the ratio of therisk period to the observation period (Figure 2.4 (a), (b),
(©), (d), (e) and (f)). We aso fixed the ratio of the risk period to the observation period

at 0.1, 0.2, 0.5, and 0.9 and varied the relative incidence (Figures 2.5 (a), (b), (c) and

(d)).
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Figure 2.4 Asymptotic variance to first and second order varying with the ratio of the
risk period to the observation period.

We note that in all graphs shown the first order variance was less than the second
order variance as expected. However, there was little difference between the first
order variance and the second order variance. As for the bias, the variance decreases
with increasing sample sizes. The varianceis largest for ratios of risk period to
observation period that are less than 0.1 and greater than 0.9 (Figures 2.4 (a), (b), (¢),
(d), (e), and (f)). Varying the relative incidence and fixing the ratio of risk period to
observation period, we obtain large variances for relative incidences less than 1 (see
Figure 2.5 (@), (b), (c)). The asymptotic variance is also large when the ratio of the
risk period to the observation period is high and the number of casesis small (n=10
and 20 see Figure 2.5 (d)) but this effect disappears as the number of cases increase
(n=50 and 100). The parameter values that give large asymptotic bias tend to be the

same that give large asymptotic variance, and conversely the parameter val ues that
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give small bias tend to give small variance (see Figure 2.2 compared to Figure 2.4,

and Figure 2.3 compared to Figure 2.5).
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Figure 2.5 First and second order variance varying with relative incidence

2.7 Asymptotic mean squareerror (AMSE)



The asymptotic mean square error up to the second order is derived as shown below.

Suppose ,B isan estimator of £ with some bias, that is, E(,B):,B+b where bisthe

bias. The variance of ,3 is var(,B) = E[,B— E(,B)T The quantity E[B—,B]Zis
called the mean square error and can be written as

2 A~

E[f-p] =€[p-(p+b)+b] =E[ -E(5)+b] E[ﬁ—E(/})TmZ 2.7)
E[/S’— E(,B)T issimply the variance. Hence if we use the asymptotic variance up to

the second order and the asymptotic bias up to the first order in (2.7) above for the
simple situation described earlier we obtain the asymptotic mean square error

(AMSE) as given in the formula below.

AMSE = (asymptotic bias)” + asymptotic variance +0(n™) (2.7)

1 1 1)\[
:[%x(reﬂ—(l—r))x(a+gﬂ

fr+1-r) | 3(efr) —2¢fr (1-r)+3(1-r)
L1l )|, 3(e) (A=0+30-1)" | oy
n e’r(1l-r) 2ne’r (1-r)
Simplifying the above, the AMSE up to the second order is:
AMSE =l(e"rJrl—r) 7(e’r) —6e’r (1-r)+7(1-r)’ +o(n).
n er@d-r) 4ne’r(1-r)
_ 1(eﬁr+1—r)2_ _ _
We can see that the expression EW isthe variance up to thefirst order. We

expect the graphical illustration of AMSE to be similar to that of the asymptotic

variance, especialy for those values where the biasis close to zero.
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2.8 Graphical study of AMSE

The AMSE varying with the ratio of the risk period to the observation at fixed relative
incidences of 0.2, 0.5, 1, 2, 5 and 10 isrepresented in Figure 2.6 (a), (b) and (c).
Similarly, Figure 2.7 (a) and (b) shows the AM SE varying with the relative incidence

at fixed ratio of the risk period to the observation period with r =0.1,0.2,0.5,0.9.
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Figure 2.6 Asymptotic mean square error as a function of the ratio of risk period to

the observation period.
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Asfor the bias and variance the values of the AM SE were obtained for the sample
sizes n=10, 20, 50, and 100. Just as for the asymptotic bias and variance, the AMSE
decreases with increasing sample size. Comparing Figures 2.6 and 2.7 with those
obtained for the asymptotic variance, we can see that the contribution of the biasis

negligible in most situations.

2.9 Conclusion

In this chapter, we have described the self-controlled case series model and introduced
the notation we will be working with from here onwards. The likelihood of the model
was derived. The maximum likelihood estimator was obtained explicitly in asimple
situation, for which the likelihood ratio statistic was also obtained. The asymptotic
bias, variance and the AM SE of the estimator in the smplified scenario were
calculated. We studied graphically how the asymptotic bias, variance, and the AMSE
vary with theratio of the risk period to the observation period and the relative

incidence at fixed sample sizes.

The main finding in this chapter is to characterise how the asymptotic bias, variance
and AMSE vary. It isimportant to know under what situations the self-controlled case
series method is going to yield biased and/or imprecise estimates. Asillustrated, the
biasis zero when there is same number of cases expected in the risk period as out of
it. The asymptotic bias and the variance are large when the ratio or the risk period to
observation period isless than 0.1 and when it is greater than 0.9. They are dso large
for relative incidences less than 1 and when the relative incidence is greater than 8.

However outside these extremes, the asymptotic bias is close to zero and the

59



asymptotic variance is close to its minimum. In other words, the bias and variance do

not depend sensitively on the parametersr and £ within their central range.

Nevertheless, in many applications to vaccines, short risk periods are required and
substantial bias can arise in such circumstances unless the relative incidence is high.
Further investigation, based on simulation rather than asymptotic theory, is therefore
required. A further limitation of our asymptotic resultsis that we have explored the
model without taking age into account. Ageis awell known confounder in adverse
outcomes with respect to vaccines in which the self-controlled case series model is
widely used. We did not take age into account because the calculation for the
asymptotic bias, variance and the AM SE become unwieldy. We shall explore the
effects of age at event, age at exposure, risk periods (fixed or indefinite) and small

samples by simulation in the next chapter.
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Chapter 3

Perfor mance of the salf-controlled case series method: Simulation
study

3.1 Introduction.

In previous chapters the theory behind the self-controlled case series method has been
described and its properties outlined. In chapter 2, the asymptotic variance and bias
and asymptotic mean square error up to the second order were derived in asimplified

scenario.

The estimates obtained by the method are valid asymptotically by virtue of likelihood
theory. What we now need is to explore the performance of the method in small
samples and under different conditions. This chapter explores various smulationsin
which we generated data where the true population value of the relative incidenceis
known. We use the self-controlled case series model to analyse the simulated data and
compare the estimate with the true value. The simulations were set up to mimic those

scenarios that typically occur in studies of paediatric vaccines.

In section 3.2 we describe how the simulations were carried out. The results from the
simulations are given in section 3.3. Wefirst present the results from what we call the
standard scenario with varying number of cases and arange of true relative
incidences. In subsequent subsections we vary the risk periods, the effect of age at
event, and the distribution of age at exposure. We aso investigate indefinite risk

periods and the presence of unexposed cases. Results exploring the effects of agein
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form of age groups labelled as strong symmetric, weak monotone increasing age
effect and strong monotone increasing age effect are given. In all the smulations we
obtain central estimates and the coverage probabilities for 90%, 95%, and 99%
confidence intervals. Also given are the percentage of simulations for which the true

value of S was below the lower 90%, 95%, 99% confidence limits, and the
percentage for which the true value of # was above the upper 90%, 95%, and 99%

confidence limits. The conclusions of the chapter are given in section 3.4. To reduce

clutter, most of the detailed results are given in an Appendix.

3.2 Thestructure of the simulation study

Figure 3.1 shows the structure and stages of the simulation that were carried out. For
agiven set of parameters (described below), sample size n and random seed, a set of n
exposure times were generated, together with n marginal total numbers of events.
These marginal totals are generated using a truncated Poisson distribution (excluding

zero), conditionally on the exposure history.

The exposures and marginal totals vary randomly between runs. However, in each run
of 10,000 simulations, the exposures and marginal totals remain fixed. Thisisto
mimic the fact that the case series method is conditional on exposures and marginal

totals.

Within arun of 10,000, the events for each individua are randomly reallocated
10,000 times to the age/exposure categories within each individual’s person time. This

Is done according to the case series model, using a multinomial distribution.
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The output from each run includes the median of the relative incidence estimates. We
also quote the median of their logarithms. The median is chosen rather than the mean,
since in finite samples there is a non-zero probability that the estimated log relative
incidence is +e and hence its expectation does not exist. The median, compared to the
true value, provides an appropriate measure of central tendency of the finite sample
bias. Note that all runs are based on 10,000 independent samples. With thisrun size,
the Monte Carlo standard error for the coverage probability of a 95% confidence

interval is about 0.002 (or 0.2 %, see chapter 4 page 101 for how it is calcul ated).

3.2.1 The parameters

Each simulation requires the following parameters to be specified.

e Observation period, aways taken to be 500 days

¢ Risk period following exposure (described in section 3.2.4)

e Reéativeincidence: the true relative incidence took values 0.5, 1, 1.5, 2, 5, 10

e Exposure distribution (section 3.2.3)

e Age groups and age-specific relative incidences (section 3.2.2, Figure 3.2
below)

e Basdinerate awaystaken to beg = 2x10" per day, or one per hundred
thousand over 500-day observation period. Thus the event is assumed to be
rare, and with high probability, a case has only asingle event.

e Samplesize: we did ssimulations with 10, 20, 50, 100, 200, 500, 1000 cases
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3.2.2 Age at the event

In most case series analyses, one needs to control for age. We varied the effect of age

on the event incidence according to practically realistic scenarios. Thus we explored

the self-controlled case series model’ s performance in the presence of what we call

weak symmetric, strong symmetric, weak monotone increasing, and strong monotone

increasing age effects. These are defined as follows.

Weak symmetric age effect. Age groups (in days, with age associated relative
incidence in brackets) are: 1-100 (1), 101-200 (1.2), 201-300 (1.5), 301-400
(1.2), and 401-500 (1).

Strong symmetric age effect. Age groups (in days, with age associated
relative incidence in brackets) are: 1-50 (1), 51-100 (2), 101-150 (3), 151-200
(4), 201-250 (5), 251-300 (5), 301-350 (4), 351-400 (3), and 401-500 (1).
Weak monotone increasing age effect. Age groups (in days, with age
associated relative incidence in brackets) are: 1-100 (1), 101-200 (1.1), 201-
300 (1.2), 301-400 (1.3), 401-500 (1.4)

Strong monotone increasing age effect. Age groups (in days, with age
associated relative incidence in brackets) are: 1-50 (1), 51-100 (1.5), 101-150
(2), 151-200 (2.5), 201-250 (3), 251-300 (3.5), 301-350 (4), 351-400 (5), 451-

500 (5.5).

Figure 3.2 below shows bar charts representing each of these four choices.
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Figure 3.1 Overview structure of the simulation study.
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Figure 3.2 The four types of age effect.

3.2.3 Exposuredistribution
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The precision of the relative incidence estimator depends on the extent of between

individual variation in exposure. We used a beta distribution on [0,500]to generate

age at exposure. The following distributions of age at exposure were investigated.

e Mean age of 250 days and standard deviation of 100 days

e Mean age of 250 days and standard deviation of 50 days

e Mean age of 125 days and standard deviation of 100 days

e Mean age of 125 days and standard deviation of 50 days

These distributions are shown in Figure 3.3.

66



For some simulations, much more highly peaked distributions of age at exposure were
considered, with mean age of 125 days and standard deviation of 10, 20, 30, and 40

days. Figure 3.4 below shows graphs of these more extreme distributions of age at

exposure.
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(I) 1(|)0 2(|)0 Méan 3(|)0 4(|)0 5(|)0 (I) 1(|)0 2(|)0 Melan 3(|)0 4(|)0 5(|)0
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Age at exposure Age at exposure

Figure 3.3 Distribution of age at exposure
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Figure 3.4 Unusually peaked distributions of age at exposure

3.24 Risk periods

In the self-controlled case series method, a major issue one has to consider before
doing any analysisisto define the risk period. Generally speaking the risk period is
elicited from experts. Different studies need different risk periods. These range from
very short (one or afew days) to very long (and occasionally indefinite). Typicaly, in
vaccine studies, risk periods of afew days/weeks are used, for example Farrington et
al [9] defined risk periods in three groups (0-3, 4-7, and 8-14 days) when they
investigated whether there was any association of diphtheria tetanus pertussis (DTP)
vaccine with febrile convulsion, whereas to study a putative association of measles
mumps rubella (MMR) vaccine with febrile convulsion they defined two risk periods
of 6-11 and 15-35 days after vaccination. In each case these choices were based on

prior knowledge of the biology of the relevant bacteria and viruses.
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We used different risk periodsin order to investigate the effect of risk periods on the
performance of the model. We looked at risk periods of 1, 5, 10, 25, 50, 100 and 200
days. We also investigated indefinite risk periods. Owing to potentially strong
confounding between age and exposure effects with indefinite risk periods, we
considered this scenario separately, and aso varied the proportion of cases exposed

(in other ssimulations al cases are exposed).

3.3 Resultsfrom the simulation study

3.3.1 Thestandard scenario

We shall now define what we are considering as the reference point, or the standard
(default) values that are typical in studies of childhood vaccination. The standard
scenario isonein which the risk period is 25 days, all cases have experienced the
exposure (vaccination), and the age effect is weak symmetric (see Figure 3.2). The
standard distribution of age at exposure has mean 250 days and standard deviation

100 days (see Figure 3.3 above).

For each run, ten thousand samples of 10 cases, 20 cases, 50 cases, 100 cases, 200
cases, 500 cases, 1000 cases with relative incidences 0.5, 1, 1.5, 2, 5, and 10 were
simulated (atotal of 7x6=42runs). Tables 3.1 and 3.2 below show the results of the

data simulated under the standard scenario.
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10 000 samples of 10 cases

10 000 samples of 20 cases

10 000 samples of 50 cases

Truevalue Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi
Rl Log(RI) 95 CI % ow %covered %ohi 95 CI %low %covered %ohi 95 CI %low %covered %ohi
99 Cl %l ow %covered %hi 99 Cl %low %covered %ohi 99 Cl %low %covered %ohi
0.500 -0.693 0.000 —oo 0.000 —oo 0.378 -0.973
(4%, 96%, 0%) (8%, 92%, 0%) (4.9%, 95%, 0.1%)
(3%, 97%, 0%) (3.5%, 96%, 0.5%) (4%, 96%, 0%)
(2%, 98%, 0%) (1.7%, 98%, 0.3%) (1.%, 99%, 0%)
1.000 0.000 0.000 —oo 0.887 -0.120 0994 -0.006
(7%, 93%, 0%) (7%, 93%, 0%) (5.8%, 94%, 0.2%)
(4%, 96%, 0%) (3%, 97%, 0%) (3.8%, 96%, 0.2%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
1500 0.405 1411 0.541 1.414 0.347 1478 0.391
(4.8%, 95%, 0.2%) (6%, 94%, 0%) (5.7%, 94%, 0.3%)
(3%, 97%, 0%) (3%, 97%, 0%) (3%, 97%, 0%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
2.000 0.693 2.004 0.695 1.908 0.646 1.967 0.676
(6%, 94%, 0%) (6%, 94%, 0%) (6%, 92%, 2%)
(4%, 96%, 0%) (3.6%, 96%, 0.4%) (3%, 97%, 0%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
5.000 1.609 4.875 1.584 5.037 1.617 5,008 1.611
(5%, 95%, 0%) (6%, 92%, 2%) (6%, 91%, 3%)
(2%, 98%, 2%) (3%, 97%, 0%) (3%, 96%, 1%)
(0%, 100%, 0%) (0%, 100%, 0%) (1%, 99%, 0%)
10.000 2.303 11.189 2.415 10.667 2.367 10.224 2.325

(5%, 94%, 1%)
(1%, 99%, 0%)
(0%, 100%, 0%)

(6%, 90%, 4%)
(3%, 96%, 1%)
(0%, 100%, 0%)

(6%, 90%, 4%)
(3%, 95%, 2%)
(1%, 99%, 0%)

Table 3.1 Simulation results for
standard scenario. RI= True
value of Relative incidence.

Log (RI)= Logarithm of the
relative incidence
%Il ow=percentage where true
value was below lower limit of
90%, 95%, 99% confidence
interval.

%covered=actual percentage
coverage of 90%, 95%, 99%
confidence interval.
%hi=percentage where true
value was above the upper limit
of 90%, 95%, 99% confidence
interval.
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Table 3.2, Simulation results for the standard scenario (continued from Table 3.1)

10 000 samples of 100 cases

10 000 samples of 200 cases

10 000 samples of 500 cases

10 000 samples of 1000 cases

TrueValue Median Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi
Rl Log(RI) 95 CI %low %covered %ohi 95 Cl % ow %covered %ohi 95 Cl %l ow %covered %ohi 95 CI %l ow %covered %ohi
99 Cl %low %covered %ohi 99 Cl %l ow %covered %hi 99 Cl %l ow %covered %hi 99 Cl %l ow %covered %hi
0.500 -0.693 0.509 -0.676 0.474 -0.823 0495 -0.703 0.496 -0.701
(5%, 95%, 0%) (5.6%, 92%, 2.4%) (5.7%, 91%, 3.3%) (5.5%, 90%, 4.5%)
(3%, 97%, 0%) (2.9%, 97%, 0.1%) (3.1%, 96%, 0.9%) (3.1%, 95%, 1.9%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
1.000 0.000 0.995 -0.005 0.989 -0.011 0.996 -0.004 1.000 -0.004
(5.7%, 92%, 2.3%) (5.8%, 91%, 3.2%) (5.1%, 90%, 4.9%) (5%, 90%, 5%)
(3%, 97%, 0%) (3.3%, 95%, 1.7%) (3.1%, 95%, 1.9%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%) (0%, 99%, 1%)
1500 0.405 1.409 0.380 1.492 0.400 1493 0.401 1.497 0.404
(5.9%, 91%, 3.1%) (5.9%, 90%, 4.1%) (5.5%, 90%, 4.5%) (5%, 90%, 5%)
(3.2%, 96%, 0.8%) (2.9%, 95%, 2.1%) (3%, 95%, 2%) (2%, 96%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%) (1%, 99%, 0%)
2.000 0.693 1.976 0.681 1.992 0.689 2.000 0.693 1995 0.691
(5.5%, 91%, 3.5%) (5.7%, 90%, 4.3%) (5.8%, 89%, 5.2%) (5%, 90%, 5%)
(2.9%, 96%, 1.1%) (3%, 95%, 2%) (3.1%, 95%, 1.9%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%) (1%, 99%, 0%)
5.000 1.609 5.011 1612 5.012 1.612 5.005 1.610 5.004 1.610
(6%, 90%, 4%) (6%, 90%, 4%) (3%, 90%, 5%) (5%, 90%, 5%)
(3%, 95%, 2%) (3%, 95%, 2%) (2%, 95%, 3%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
10.000 2.303 10.123 2.315 10.035 2.306 10.016 2.304 10.020 2.305

(6%, 90%, 4%)
(3%, 95%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(3%, 95%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(3%, 95%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(2.9%, 95%, 2.1%)
(0.6%, 99%, 0.4%)
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Thefirst column of Tables 3.1 and 3.2 shows the value of the true relative incidence
followed by the logarithm of the true relative incidence. The next columns shows
median estimate (valuesin bold) for 10 000 samples of the ssmulated data for
different number of cases, followed by the logarithm of the median estimate. Below
the median estimates (valuesin italics), we have three rows of values corresponding
to the percentages of 90%, 95%, and 99% confidence intervals were the true value
was below (%low), within (% covered) and above (%hi) the 90%, 95%, and 99%
confidence intervals respectively. Figure 3.5 below shows the relative bias, defined as
theratio

(median relative incidence) — (true relative incidence)
(true relative incidence)

as afunction of sample sizefor relative incidences of 0.5, 1, 1.5, 2, 5, 10. The

numbers of cases considered were: 10, 20, 50, 100, 200, 500 and 1000.

5 1 15

o .__’/._._—-0—0——0
o
<]
o
-
2 5 10

0'0\.,0——0——0——0—0./0—0—0—0—0—0.\'\’—'—0—0—0

Relative bias

T T T
10 20 50 100200 5001000 10 20 50 100200 5001000 10 20 50 100200 5001000

Number of cases
The number above each graph represents the true relative incidence

Figure 3.5 Relative (median) bias against median estimates for samples of 10, 20, 50,
100, 200, 500, and 1000 cases for true relative incidences of 0.5, 1, 1.5, 2, 5, 10.
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Therelative biasis used here for comparison purposes between different true relative
incidences. Note that we would expect the relative bias to be equal to zero if the

estimates were not biased.

We can seein Figure 3.5 above that the median estimates obtained using the self-
controlled case series model with 10 and 20 cases were biased when estimating true
relative incidences of 0.5 and 1. This bias largely disappears as the number of cases
increases say for numbers of cases greater or equal to 20. The bias was small when

estimating the true relative incidences of 1.5, 2, 5 and 10. In chapter two, we showed

that the bias (when there are no age effects) is negative when €’ < 1_Tr and positive

whene’ > =r . A similar phenomenon is demonstrated in Figure 3.5 above: the bias
r

tends to be negative for small values of the relative incidence, and positive for large

values of the relative incidence (here r = 2 = 0.05).

The other pattern we can seein Tables 3.1 and 3.2 is that the coverage probabilities
for the confidence intervals were reasonably close to the nominal values even with
small numbers of cases. Figure 3.6 below illustrates the percentages of 90%, 95%, and
99% confidence intervals that contained the true relative incidence. The figures
indicate that overall, for the standard scenario described above, the coverage
probabilities tend to be slightly conservative (that is, higher than nominal values) for
small sample sizes. As one would expect, the larger the number of cases, the more
accurate the coverage probabilities are. Note finally that the confidence intervals tend
to be non-central, and are systematically shifted upwards so that the percentage of

simulations in which the lower confidence limit falls above the true parameter value is
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greater than the percentage of simulations in which the upper confidence limit falls

below the true value.
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Figur e 3.6 Percentages of 90% (in blue/dash), 95% (in red/solid) and 99% (in
green/dots) confidence intervals that contained the true relative incidence of 0.5,1,
1.5, 2, 5, 10 for samples of 10, 20, 50, 100, 200, 500, and 1000 cases.

3.3.2Varying therisk period

In this section we present results from simulations for the standard scenario defined
above, except that instead of keeping the risk period fixed at 25 days, we varied it.
Therisk periods we looked at were: 1 day, 5 days, 10 days, 50 days, 100 days, and
200 days. We shall classify the risk periods as; ‘short risk period’ for 1 day and 5 days
risk periods, ‘typical risk period’ for 10 days and 50 days, and ‘long risk period’ for
100 and 200 daysrisk periods. The interest isin observing the effect of the risk period

on the estimates obtained by the model. Further, to reduce the output, we have
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restricted our simulations to 20, 100, and 500 cases. Tables 3.3 to 3.8 shows the
results. In order to reduce clutter, we only present Table 3.3 and 3.4 here; Tables 3.5
to 3.8 are presented in APPENDIX 1. Table 3.3 shows results for a1 day risk period,
Table 3.4 for a5 daysrisk period and so on in increasing order up to Table 3.8 which
shows results for a 200 days risk period. We summarise the results given in Tables 3.3
to 3.8 viathe relative bias graph (see Figures 3.7 (a), (b), (c)) for truerelative
incidence of 0.5, 1, 1.5, 2, 5, 10. We can see from Tables 3.3 to 3.8 that the coverage
probabilities for the 90%, 95%, and 99% confidence intervals are generaly
conservative, and become closer to their nominal values as the risk period increases in

the range considered.
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Rl Log(RI) 10 000 samplesof 20 cases | 10 000 samples of 100 cases | 10 000 samples of 500 cases
Median Median Median
90 Cl %low %covered %ohi 90 CI %l ow %covered %hi 90 Cl %l ow %covered %hi
95 Cl %low %covered %hi 95 Cl %low %covered %hi 95 Cl %low %covered %hi
99 ClI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi
0.500 -0.693 0.000 —oo 0.000 —oo 0.000 —oo
(2%, 98%, 0%) (1%, 98%, 1%) (10%, 90%, 0%)
(2%, 98%, 0%) (2%, 98%, 0%) (2%, 98%, 0%)
(2%, 98%, 0%) (2%, 98%, 0%) (2%, 99%, 0%)
1.000 0.000 0.000 —oo 0.000 —oo 0.928 -0.074
(4%, 96%, 0%) (2%, 98%, 0%) (10%, 90%, 0%)
(4%, 96%, 0%) (2%, 98%, 0%) (1%, 99%, 0%)
(2%, 98%, 0%) (2%, 98%, 0%) (2%, 98%, 0%)
1500 0.405 0.000 —oo 0.000 —oo 0.961 -0.040
(6%, 94%, 0%) (4%, 96%, 0%) (8%, 92%, 04%)
(6%, 94%, 0%) (4%, 96%, 0%) (2%, 98%, 0%)
(1%, 99%, 0%) (2%, 98%, 0%) (1%, 99%, 0%)
2.000 0.693 0.000 —oo 0.000 —oo 1.864 0.623
(8%, 92%, 0%) (7%, 93%, 0%) (7%, 93%, 0%)
(4%, 96%, 0%) (3%, 96%, 1%) (3%, 97%, 0%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
5.000 1.609 0.000 —oo 4636 1534 4732 1554
(5%, 95%, 0%) (9%, 91%, 0%) (5%, 93%, 2%)
(2%, 98%, 0%) (3%, 97%, 0%) (4%, 96%, 0%)
(2%, 98%, 0%) (2%, 98%, 0%) (1%, 99%, 0%)
10.000 2.303 0.000 —oo 9.397 2.240 9.669 2.269

(7%, 93%, 0%)
(2%, 96%, 2%)
(1%, 99%, 0%)

(6%, 94%, 0%)
(4%, 96%, 0%)
(1%, 99%, 0%)

(6%, 90%, 4%)
(3%, 96%, 1%)
(1%, 99%, 0%)

Table 3.3 Simulation results for 1

day risk period.

(see Table 3.1 for details)
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Rl Log(RI) 10 000 samplesof 20 cases | 10 000 samples of 100 cases | 10 000 samples of 500 cases
Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %hi
95 CI %low %covered %ohi 95 CI %low %covered %ohi 95 CI %low %covered %ohi
99 Cl %low %covered %ohi 99 Cl %l ow %covered %hi 99 Cl %l ow %covered %hi
0.500 -0.693 0.000 —oo 0.000 —oo 0.531 -0.634
(10%, 90%, 0%) (10%, 90%, 0%) (6%, 94%, 0%)
(3%, 97%, 0%) (2%, 98%, 0%) (4%, 96%, 0%)
(1%, 99%, 0%) (2%, 98%, 0%) (1%, 99%, 0%)
1.000 0.000 0.000 —oo 0.898 -0.108 0.943 -0.058
(5%, 95%, 0%) (8%, 92%, 0%) (5%, 93%, 2%)
(2%, 98%, 0%) (3%, 97%, 0%) (3%, 97%, 0%)
(2%, 98%, 0%) (2%, 98%, 0%) (1%, 99%, 0%)
1500 0.405 0.000 —oo 1.018 0.018 1477 0.390
(4%, 96%, 0%) (7%, 93%, 0%) (6%, 90%, 4%)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
2.000 0.693 0.000 —oo 1.866 0.625 2.000 0.646
(6%, 94%, 0%) (6%, 94%, 0%) (5%, 91%, 4%)
(6%, 94%, 0%) (3%, 97%, 0%) (2%, 96%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
5.000 1.609 4745 1557 4840 1577 4986 1.607
(7%, 93%, 0%) (6%, 92%, 2%) (6%, 91%, 3%)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.4%)
10.000 2.303 9.969 2.299 9.882 2.291 9.963 2.299

(5%, 95%, 0%)
(3%, 97%, 2%)
(1%, 99%, 0%)

(6%, 90%, 4%)
(3%, 96%, 1%)
(1%, 99%, 0%)

(5%, 91%, 4%)
(3%, 95%, 2%)
(0.7%, 99%, 0.3%)

Table 3.4 Simulation results for 5

days risk period.

(see Table 3.1 for details)
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The graphsin Figures 3.7 (a), (b) and (c) show that, for each sample size, the relative
bias was greatest for 1 day risk period, particularly for low relative incidences. For a
given relative incidence, the bias is negative for short risk periods and positive for
long risk periods. The sign of the bias essentially depends on the number of casesin
the risk and control periods. Asthe number of casesincreases, the relative bias

decreases and is close to zero even with 1 day risk period.

Bias for 20 cases

Relative bias

T
0.5 1 1.5 2 5 10
True relative incidence
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Bias for 100 cases
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Figure 3.7 Relative median bias for 10 000 samples of 20, 100, and 500 cases at true

relative incidences of 0.5, 1, 1.5, 2, 5, 10
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3.3.3 Varying the age effect

In this section, we explore the effects of age for the strong symmetric, weak
monotone, and strong monotone increasing age effects (see Figure 3.2 for the
different age groups and their corresponding age specific relative incidences). We use
sample sizes 20, 100 and 500 cases as in section 3.3.2, and use risk periods of 10
days, 25 days, and 50 days with relative incidences of 1, 2 and 5. The distribution of
age at exposure is the standard one with mean 250 days and standard deviation 100

days.

Tables3.9t0 3.11 in APPENDIX 1 shows the results. Tables 3.9 corresponds to the
strong symmetric age effect, Table 3.10 to the weak monotone increasing age effect,
and Table 3.11 to the strong monotone increasing age effect. The resultsin these
tables are summarised in Figures 3.8 to 3.10. We can see that the relative biasis
largest for 20 cases, being the smallest number of cases considered. Asfor the
findingsin section 3.3.2, we note that it is for the shorter risk period (10 days risk
period in blue/dash) that the relative bias is most prominent. In contrast, the age
structure, (strong monotone, strong symmetric, or weak monotone) has little influence
on therelative bias. It appears that the performance of the model is mainly influenced
by the number of cases and the length of the risk period. Likewise, Tables 3.9to 3.11
show that the coverage probabilities of the 90%, 95%, and 99% confidence intervals

are not substantially affected by the age structure.

80



From 20 cases

Strong monotone Strong symmetric Weak monotone

Relative bias

True relative incidence

——& —- 10 days risk period ——— 25 days risk period
------- @ 50 days risk period

Graphs by Distribution of age at event

Figur e 3.8 Relative median bias for 10 000 samples of 20 cases at true relative
incidences of 1, 2, 5 with age effects for strong monotone, strong symmetric and weak
monotone. Therisk periods are 10 days, 25 days and 50 days.
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Figure 3.9 Relative median bias for 10 000 samples of 100 cases at true relative
incidences of 1, 2, 5 with age effects for strong monotone, strong symmetric and weak
monotone. Therisk periods are 10 days, 25 days and 50 days.
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Figure 3.10 Relative median bias for 10 000 samples of 500 cases at true relative
incidences of 1, 2, 5 with age effects for strong monotone, strong symmetric and weak
monotone. Therisk periods are 10 days, 25 days and 50 days.

3.3.4 Varying the age at exposure.

In the last few sections, we varied the relative incidence, risk periods and the age
dependence but in all scenarios, the distribution of age at exposure was kept fixed to a
symmetrical beta distribution with mean 250 days and standard deviation 100 days
(see Figure 3.3). Here we explore the performance of the model when we vary the
distribution of age at exposure. We present results for the simulations of 100 cases
only, and restrict attention to relative incidences of 1, 2, and 5 and risk periods of 10

days, 25 days and 50 days as in section 3.3.3. We present results for weak symmetric
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age effects (the standard scenario) and strong monotone increasing age effects. We
investigate distributions of age at exposure with mean 250 days and standard
deviation of 50 days, mean age of 125 days and standard deviation of 100 days, and
mean age 125 and standard deviation 50 days, as shown in Figure 3.3. Theresults are
givenin Tables 3.12 and 3.13 (APPENDIX 1). The graphsin Figures 3.11, (a), (b)
and (c) below show the relative bias for different age distribution at exposure and

different age effects.

Figure 3.11 (a) shows that a symmetric distribution of age at exposure that is more
peaked than that of standard scenario (standard deviation 50 days and mean 250 days)
has little effect on the results. However Figures 3.11 (b) and (c) reveal some
differences when the distribution of age at exposure is skewed. In this situation, the
biasis greater when the age effect is strong monotone than when it is weak
symmetric. When the age effect is strong monotone, events are most likely to occur at
older ages, whereas most risk periods span younger ages. Thus the imbalance between
expected numbers of eventsin risk period and control periodsis greater and this leads
to greater bias. This effect is most pronounced for short risk periods. A further reason

for the bias may be confounding between age and exposure effects.
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Figure 3.11 Relative bias against relative incidence, for risk periods 10, 25, 50 days
and two age effects, when the mean age at exposure is 250 days, standard deviation 50

days (a), mean age at exposure is 125 days, standard deviation 100 days (b), and mean
age at exposure is 125 days and standard deviation 50 days (c).

3.3.5 Indefiniterisk periods

In all the scenarios explored so far, the risk periods were of pre-determined length.
The self-controlled case series method can be used even when the risk period
following an exposure isindefinite. However, the effects of exposure and age may
then be substantially confounded. The confounding can be controlled by including
unexposed cases, which contribute exclusively to the estimates of the age effect. This

was explored in the simulations described below.

In this section, we present results using indefinite post-exposure risk periods when
100% of cases are exposed, five sixth of the cases are exposed, two thirds of the cases

are exposed and half of the cases are exposed. We first used two exposure
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distributions (for those exposed): mean 250 days with 100 days standard deviation

and with mean 125 days with 50 days standard deviation. We used weak symmetric

and strong monotone increasing age effect with true relative incidences of 1, 2, and 5.

All runsinclude 100 cases exposed. The results from the simulations are presented in
Tables 3.14 to 3.17 (APPENDIX 1). The coverage probabilities are very close to the
nominal values. Figure 3.12 summarises the relative bias for all the simulations

presented in Tables 3.14 to 3.17.

Graphs showing relative bias
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Figure 3.12 Relative median bias for 10 000 samples of different exposed proportions

such that 100 cases were exposed for the true relative incidences of 1, 2, 5 with age
effects for strong monotone and weak symmetric age groups.

Figure 3.12 shows that the relative biasis small for relative incidences of 1 and 2,
whatever the age at exposure and age at event distributions. Note that there was one
exception to thisfor the relative incidence of 2 with the weak symmetric age effect.

The outlier could be due to random variation.
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However, for relative incidence of 5 the relative biasis greater for strong monotone
increasing age effects than for weak symmetric age effects and greater when the age
at exposure distribution is skewed than when it is symmetric. This may be explained

by confounding of age and exposure effects when the risk period is indefinite.

The presence of unexposed cases reduces the bias to some degree, though perhaps less
than anticipated. To explore these effects further, more peaked and asymmetric
distributions of age at exposure were investigated. In these additional simulations, the
relative incidences were 1, 2, and 5 as before, and we used the strong monotone
increasing age effect. The distributions of age at exposure had mean 125 days and
standard deviations of 10, 20, 30, and 40 days respectively (see Figure 3.4). All
simulations were done with indefinite risk periods, and the same proportions exposed

as those used earlier.

Theresultsarein Tables 3.18 to 3.20 of APPENDIX 1 and are summarised in Figure
3.13 below. As expected, the bias tends to increase as the standard deviation of the
age at exposure decreases. The presence of asmall proportion of unvaccinated cases

greatly reduces the bias: the biaswith 2 cases vaccinated is much the same as with

4 cases vaccinated.
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Figure 3.13 Relative bias for strong monotone increasing age effect.

3.4 Conclusion

In this last section of the chapter, we bring together the main findings. We have
investigated a very broad range of scenarios, based on variations of a‘ standard
scenario’ which is arepresentative of many studies of paediatric vaccines. In the
standard scenario we found that the estimates were substantially biased for sample
sizes of 20 or less, when the true relative incidence was< 1. However for relative
incidence >1.5 the biases were moderate even with sample sizes of 10 cases, and

very small when the number of caseswas>50.

In section 3.3.2, risk periods as short as 1 day and up to a maximum of 200 days were

investigated. In these situations, the estimates were biased for short risk periods. For
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example when the risk period was 1 day, the bias was large when the relative
incidence was 0.5 even with 500 cases. Similarly the bias was large for relative
incidence of 2 and 100 cases. Generally speaking, the longer the risk period in the

range considered (up to 200 days), the less biased the estimates were.

Different age effects classified as weak symmetric, strong symmetric, weak monotone
increasing, strong monotone increasing were explored in section 3.3.3. There was
little evidence that these age effects affected the performance of the self-controlled
case series model with fixed risk periods. The effect of different distributions of age at
exposure was explored in section 3.3.4. Aswith the age at event, the distribution of

age at exposure did not have much bearing on the results for fixed risk periods.

In section 3.3.5 we looked at the effect of indefinite risk periods. Some researchers
[51, 52] have argued that the self-controlled case series model may not be effective if
oneislooking at a situation were adverse events may manifest themselves along time
after exposure. We explored thisissue by extending the risk periods to indefinite
length. Results showed that overal there was little bias except for large relative
incidences and distributions of age at event and age at exposure that induce
confounding between exposure and age effects. This confounding and the bias it
generates can be controlled by including unvaccinated cases. Some bias remains, but
itisnot large. Including 20% unexposed cases appears sufficient to reduce the bias to

acceptable levels.
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In al situations explored, the coverage probabilities from ten thousand samples of
different number of cases werein excess of their nomina values, even in the presence

of substantial bias.

In chapter 2 we found that when there are no age effects, the magnitude of the
asymptotic bias depends largely on the balance of expected numbers of eventsin the
risk and control periods. when the expected number of eventsin therisk period isless
than that in the control period, the biasis negative, and vice versa. When the two

expectations are equal, the biasis zero.

In this chapter we have explored more complex situations and finite samples by
simulation. Qualitatively similar results emerge: for agiven sample size, the biasis
greatest in magnitude when the expected number of eventsin the risk period is much
smaller than the expected number in the control period. In practice, biasisonly aredl
problem when the risk period is very short or relative incidenceislow. In other

circumstances, sample sizesin excess of 20 appear to give reliable results.

Another point to mention is the coverage probabilities. These are generally reasonably

accurate even in the presence of extreme bias: thisis not surprising, since when the
expected number of event in the risk period is very small, the variance of /3 = log(p)

(where p =€’ istherelative incidence) is very large, as may be seen from the

asymptotic calculations of chapter 2. Hence the confidence intervals will themselves
be very wide. Confidence intervals based on profile likelihood methods may perhaps

be better in such circumstances.
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The overal conclusion isthat estimates and confidence intervals based on asymptotic
theory are reliable except in extreme scenarios (namely very small sample size, very

short risk period, low relative incidence).
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Chapter 4

Sample size formulae for the self-controlled case series method; fir st
attempts

4.1 Introduction

When designing a study, one of the most important questions to address is the
required sample size. In this chapter we propose various sample size formulae for
designing a study that will use the self-controlled case series method. In [3] asample
sizeformulafor use in case series studies was derived based on anormal
approximation to the distribution of the estimated relative incidence. However, the
performance of this sample size formula has not been evaluated. Furthermoreitis
only valid when there are no age effects. In this chapter the accuracy of this sample
size formulais assessed by simulation. Other sample size formulae are explored and
results from simulation studies to evaluate their performance are given. All these
formul ae assume a simplified situation without age effect. In chapter 5, aformula

incorporating age effects will be presented.

In section 4.2, we briefly present some background and the notation to be used in this
chapter. In section 4.3, we derive four sample size formulae based on different
asymptotic arguments. These formulae are derived under the assumption that there are
no age effects, and are evaluated in section 4.4. We conclude with a brief discussion

in section 4.5.
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4.2 Background and notation

In this chapter we will be concerned only with situations where the underlying (or
baseline) incidence of an event is constant, that is, does not vary with age (or time, if
timeisthe relevant timeline). At each time point, an individual is categorized as
exposed or unexposed. Typicaly, the times at which an individual is considered to be
exposed occur within a defined time interval following a point exposure, for example

receipt of avaccine. The period of exposureis called the risk period.

We further assume that all individuals are followed up for an observation period of
the same length, and that a proportion v of individuals in the population experience
the exposure during this observation period. We will assume, also for simplicity, that
all exposed individuals spend the same time exposed. As mentioned before in chapter
2, in practice, the observation and exposure periods vary between individuals, but this

variation can reasonably be ignored for the purposes of sample size calculations. If g
is the length of the risk period and g,is the duration of the control period,

thenr = e /(g, +g) is the proportion of observation time for which an individual is
exposed. Usually, g and g, + e will be specified in the design. However, only their

ratio r isrequired.

During the risk period, the baseline incidence of an adverse event isincreased by a
multiplicative factor p =€’ , where p istherelative incidence. The value of

parameter p (or #) which may be considered clinically important is the focus of
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inference. Under the null hypothesis, p =1 whereas under the alternative hypothesis

we specify some vauefor p #1, the value we wish the study to detect.

A caseisanindividua who experiences at |east one event during the observation
period. Suppose that a sample of casesis available, and that atotal of neventsarisein
these cases. Note that n refersto events, not individuals: the case series method
allows multiple events per individual, provided these events are independent. Our
sample size formulae will generally relate to numbers of events, though in the next
chapter we briefly touch upon estimating the number of cases required. If the event of
interest is non-recurrent, then the case series method still applies provided the event is

rare. Of thesenevents, suppose that n, arise in exposed individuals, that is,

individuals who were exposed at some time during the observation period. Suppose

aso that n, eventsarise in unexposed individuals, that is, individuals who were not
exposed during the observation period. Of the n,eventsin exposed individuals,

suppose that x arisein arisk period. Then the case series|og likelihood for the

parameter p can be shown (see chapter 2) to be

f(p):xlog(p—rj+(ne—x)log(l_—r} 4.1)

pr+l1-r pr+l1-r

Note that (4.1) is equivaent to abinomial likelihood with binomial proportion
7w =prl/(pr+1-r) andindexn,, and that it does not involven, : only exposed

individuals contribute to the log likelihood when there are no age effects. The

likelihood ratio statistic for thetest of H,: p =1 (or equivalently f=0) isthus
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~

D=2{¢(p)-¢ (1)} =2{xlog(p)-n.log(pr+1-r)}. (4.2)
where p is the maximum likelihood estimator of p . Finally, note that, in large

samples, we have

1+vr(p-1)

ntn, .
v(pr+1-r)

(4.3)

In particular, if p=1then nll n,/vinlarge samples, and if v =1, then n=n,.

We present four sample size formulae based on different asymptotic approximations,
assuming there is no age effect. In what follows, the significance level is denoted &,

and to avoid confusion with the parameter 3 (the log relative incidence) we shall
denote power to be 1-y . Thus Z,_,,,isthe (1-(a/ 2)) — quantile of the standard
normal distribution, and Z isits y —quantile. For smplicity, the formulae quoted in

this chapter are for n,, the total number of events required in exposed individuals.

4.3 Sample size formulae without age effects

4.3.1 Sample size formula based on the asymptotic sampling distribution of p

In this subsection, we describe the sample size formula which was first published by
Farrington et a [3]. The idea behind the derivation of the formulaisto use p asthe
test statistic, and base the sample size formula on its asymptotic normal distribution.
The asymptotic variance of o may be obtained by twice differentiating (-1) times
expression (4.1) with respect to p , taking expectations, and inverting the result. This

gives the expression for the variance as
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p(pr+1—r)2.
r(1-r)

N 1
var(p)0 n
A general sample size formulafor anormally distributed test statistic where one
assumes that the variance under the null hypothesisis different from that under the
alternative hypothesisis given by Armitage et al [53] as

2

Z +0,Z

n=(‘7° a2 0 Vj _ (4.4)
M= Hy

where the test statistic under H,, is distributed

O_2
)

and under H, isdistributed

o2
N| z,—

Note that 12, — 1, is the clinically important difference to be detected in the population.
Thus under the null hypothesis,
p=N@1/ nr@-r))

and under the alternative,
p=N (p,p(pr +1—r)2/ner(1—r)).

Replacing the parameters from the two approximate distributions of p under the null

and alternative hypothesisin the general expression (4.4) leads to the following
sample size formula

1

ne:mx[zl_a,ﬁzy(pwl—r)\/;] : (4.5)
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The aboveis aspecia case of the formula given by Farrington et a [3] with everyone

exposed. Note that in all sample size formulae given here we round n, up to the next

integer that is greater or equal to the number of events needed.

4.3.2 Sample size formula based on the asymptotic sampling distribution of £

A concern about (4.5) is that the sampling distribution of o may not be symmetricin
small samples. Thus we derived a sample size formula based on the sampling

distribution of 5 = log(p)in the hope that this might be less skewed. In chapter two

we showed that the asymptotic variance of ,B up to the first order inn, (see formula

(2.6)) is

~ 1 (pr+l-r)’
Var(ﬂ)mn_e—pr(l—r) :

Under the null hypothesis, 3~ N (0,1/n.r (1-r)) whereas under the alternative,
B=N (ﬂ,(pr +1—r)2 I n,pr (1—r)) . Using (4.4) leads to the following expression for

the sample size formula

1
N, = r(l_r)log(p)zX[Zl—alz"'zy(pr"‘l_r)/\/;]

2

(4.6)
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4.3.3 Sample size formula using second order variance of B

As has been mentioned above, sample size formula (4.6) was obtained in an effort to
try and improve on the possible non-symmetric distribution of p in small samples.
Evaluation of formulae (4.5) and (4.6) under simulation showed that the two formulae
were not accurate (results shown in section 4.4): the observed power was not as
expected in some cases. The results from the simulation were particularly poor when
the risk period was short and the clinically important relative incidence to be detected
was in the extremes, for example relative incidences of 0.1, or 10. Having identified
this problem, we extended the asymptotic variance of the estimate ,B up to the second

order in n,, in the hope that the sample size formula derived would better take

account of the variation in the estimate of the relative incidence. Below is how the

sample size formula using second order asymptotic variance was derived.

Let p :p—rbethe risk of an event in therisk period
pr+l1-r

andgq=1-p= 1——1r the risk of the event occurring in the control period. As
pr+l-r

beforer istheratio of the risk period to the observation period. The second order

asymptotic variance was found in chapter 2 as:

2 3 3

A 1 p—q)° 2(p'+q
var(f) = _(zz)2+ (222)
n.pq 2n;p°q N, P°q

Under H,: u,=/8=0, o0 n var(f), and p=1. Substituting p, p, and q in

var ( ) above and simplifyin , we have:
(8) plifying

, 1 @r-1? 2(r*+@-r))
0y = - 2 2t 2 2
r—r) 2nr°@1-r) nrel-r)
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H — — P 1 ( p q)2 2( |03 C|3)
Under . =/, 2_n var , 2_ = _ +
1- 4 IB 0, e (ﬁ) 0, pqg 2ne quz n, p2qz

Substituting o, and o; in (4.4) and smplifyingintermsof r, and p, we get the

following sample size formula:

(2, yNA+Z,p BT
=T (r@-n)*(log(p))’
where
Ao (2 =D A+ a-1))
2n, n,
B=pr(d-r)(pr +1-r)° - (pr -1+ r)22r(]pr +1-r)? . 2((pr)°+ (1—;)3)(pr +1-r1)

Note that the above formulaisimplicit sincen, occurs both on the left and right hand
sides of (4.7). We obtained n, by an iterative search from a particular starting point.
We used the lowest value of n, obtained from sample size formulae (4.5) and (4.6) as

the starting values.

4.3.4 Sample size formula based on the binomial proportion

In the simplified setting as described earlier, events in exposed individuals occur

either in the risk period or in the control period. Hence the events can be considered to

follow abinomial distribution with proportionz = pr /( pr +1-r); therefore, we can

use binomial proportions to derive a sample size formula for the self-controlled case

series method. The binomial probabilitiesunder H, and H, are:

7, = P(eventin risk period|H,) =r
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m, = P(eventin risk period|H,) __'p
rpo+1l—r

=p
Let x denote the number of eventsin the risk period,
thusx [ Bin(n,,7,) under H, and xU Bin(n,,7,) under H,.

By the normal approximation to the binomial (Fleiss et al [54]), under

X—N71, X—NJ,

H, ——=——~=N(0,1) andunder H,, ———=—=— = N(0,1) . The sample size
’ \ neﬂo(l_ﬂ-o) ( ) ' \ neﬂ-l(l_”l) ( ) P

formula based on the normal approximation to the binomial distribution (Fleiss et al
[54]) isgiven by:

T =7

. {Zl_a,mo A=) +2,{r0-7) }

Substituting the values of 7 and z, we get:

2 iz, [P0

~ (rp+1-r)°

" r(p-D-r)
rpo+l—r

4.8
r(p-DA-r) “9

_ _(rp+1—r)Zl_a,2«/r(1— ) +Z,rp-r) T

In the next section we present a comparative evaluation by simulation of sample size

formulae (4.5), (4.6), (4.7) and (4.8).
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4.4 Compar ative evaluation of sample size formulae (4.5), (4.6), (4.7) and (4.8)

So far, we have derived four sample size formulae for the self-controlled case series

method. We now present results from a simulation study to evaluate them.

4.4.1 Simulation study

The simulation study was carried out as follows. First we specified the observation

period (500 days), the relative incidence ( p ), the value r , that isthe ratio of the risk

period to the observation period, the power (set at either 80% or 90%), the
significance level (set at 5%) and we assumed everybody was exposed. The values of
r, theratio of therisk period to the observation period were 0.01, 0.05, 0.1, and 0.5

(corresponding to 5, 25, 50, and 250 days, respectively). Therelative incidences (p)

to be detected at the two sided 5% significance level with 80% or 90% power were

0.1,05,12,15,2, 3,5, 8and 10.

After calculating the number of cases required using the specified parameters, we
rounded the sample sizen, up to the next integer. We then generated 2000 random
samples of n, cases with a single event per case. Each of then, cases was obtained

using a 500-day observation period, including arisk period of duration 500xr days.
Thus all cases were assumed to be exposed. The single event for each case was

randomly allocated to the risk and control period based on the true value of p .
Then p was estimated using the self-controlled case series method for each sample

of n, events. The observed power was found by calculating the overall proportion of
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the 2000 samples for which the likelihood ratio test rejected the null hypothesis at the
5% significance level. The Monte Carlo standard error (MCSE) for the empirical

power isfound by

power x (1— power)
number of simulations’

MCSEz\/

It isabout 0.89 per cent at 80% power and 0.67 per cent at 90% power.
4.4.2 Results

Tables 4.1 and 4.2 below show the results obtained using the four sample size

formulae. The combination of four values of r, nine values of p , two powers, and

four sample size formulae thus required 288 different simulations of 2000 samples.
The different sample sizes calculated using the different formulae are given in

columns headed N5, N6, N7, N8 corresponding to sample size formulae numbered
(4.5),(4.6),(4.7),(4.8) respectively. The corresponding observed power (in %) under

simulation for each sample sizeis given in columns headed P5, P6, P7, P8.

The sample sizes produced by the four formulae are generally of asimilar order of
magnitude, with some very noticeable exceptions, particularly

withr =0.01land p >5. Forr = 0.0, p =10and power 0.8, the sample sizes ranged

from 29 (N8) to 170 (N7), agreater than 5-fold difference. This variation indicates

that some of these formulae, at least, must be inaccurate over this range.

Itisclear that all the four formulae N5, N6, N7 and N8are inaccurate for many

parameter combinations, especially for extreme values of p . This could be most likely
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due to skewness of the sampling distribution of p and ,B especialy for sample size

formulae N5 and N6. Formulae N5 and N8 tends to overestimate the sample size
required (as seen by the empirical power) for relative incidence less than one and
underestimate the sample size required for relative incidence greater than eight but the
underestimation is not present for relative incidence greater than eight when the ratio
of the risk period to the observation period was 0.5 for 80% power and when

r =0.1and 0.5 for 90% power (see P5and P8in Tables4.1 and 4.2). On the other
hand, the power observed from formulae N6 and N7 does not seem to show aclear
pattern; for some values of the relative incidence, the observed power is greater than
the nominal value (seeP6 and P7) and for othersit islower. The power observed
from all four sample size formulae derived so far seem to be accurate when trying to

detect relative incidencesof Rl =1.2 and 1.5.
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Table 4.1 Empirical power for 80 per cent nominal value

r RI N5 N6 N7 N8 P5 P6 P7 P8
% % % %
0.01 0.10 | 617 403 819 609 | 96 67/ 98 88
050 | 2632 2079 2265 2618 |81* 80 81* 83
120 | 21000 22644 22874 21031 | 80 80 80 79
150 | 3627 4327 4448 3638 | 78 84 84 80
200 | 1010 1379 1499 1015 | 76 87 88 78
3.00 | 301 505 610 302 |78 88 95 79
5.00 | 97 216 306 98 |80 9% 97 80
8.00 | 42 122 199 42 |62 98 99 62
10.0 | 30 97 170 29 |79 98 99 79
0.05 0.10 | 128 81 161 119 | 96 67 99 89
0.50 | 544 427 462 529 |84 80 78 86
120 | 4400 4741 4767 4431 | 80 80 80 80
1.50 | 767 910 891 779 |77 84 82 80
2.00 | 217 293 274 223 |76 8 83 72
3.00 | 67 109 86 69 |70 88 84 74
5.00 | 24 48 56 24 180 9% 9% 80
8.00 | 12 28 43 11 |75 9% 99 69
100 | 9 22 36 8 63 98 99 56
01 010 |67 41 79 58 | 96 62 98 85
0.50 | 284 221 210 269 |86 73* 80 83
120 | 2337 2517 2508 2371 |78 81 80 80
1.50 | 412 486 479 425 |75 82 81 76
2.00 | 119 159 153 125 | 75 85 81 75
3.00 | 39 60 58 41 |64 84 81 75
5.00 | 15 27 15 15 |69 89 69 69
8.00 |9 16 11 8 69 92 80 81*
100 |7 13 9 6 79 9% 79 69
05 010 |22 9 14 9 99 80 97 80
0.50 | 93 68 69 69 |92 77 81 81
1.20 | 886 947 948 948 | 77 80 80 80
1.50 | 169 194 194 194 | 73 80 80 80
2.00 | 57 68 69 69 |77 76 81 81
3.00 |24 29 29 29 |77 81 81 81
5.00 | 15 16 14 16 |76© 83 82 88
8.00 |14 11 9 11 |93 87 75 87
100 | 14 9 11 9 97 81 93 81

r =ratio of therisk period to the observation period, v=1,the proportion vaccinated,

Rl = relative incidence to be detected, N5 = sample size (using formula (4.5) ),
N6 =sample size (using formula (4.6) ), N7 =sample size(using formula (4.7) ),

N8 =sample size (using formula (4.8) ), P5= observed power for N5, P6 =observed

power for N6, P7 =observed power for N7, P8 = observed power for N8. * Saw-

tooth phenomenon (see text).
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Table 4.2 Empirical power for 90 per cent nominal value

r RI NS N6 N7 N8 P5 P6 P7 P8
% % % %
0.01 0.10 | 696 681 762 688 |97 97 99  95*
050 | 3309 2978 3082 3297 |91 87 90 90
120 | 28622 2981 29950 28641 | 90 90 90 90
150 | 5056 5573 5700 5062 |90 91 90 87
200 | 1452 1739 1855 1453 |88 92 93 89
3.00 | 451 617 720 450 | 86 94 97 84
5.00 | 155 255 343 152 | 87 9% 99 86
800 |71 140 217 68 |91 97 99 89
10.0 | 51 110 183 48 |8 99 98 82
0.05 010 | 144 135 241 135 |95 97 99 97
0.50 | 681 609 648 669 | 92 90 93 90*
120 | 6006 6251 6277 6026 |90 90 90 90
150 | 1073 1178 1203 1079 |88 90 92 89
2.00 | 315 372 394 316 | 89 92 94 9
3.00 | 102 135 154 101 |84 94 96 90*
5.00 | 39 57 74 36 |8* 93 99 90
8.00 |21 33 47 17 | 90 98 99 81
100 | 16 26 40 13 [86* 99 99 87*
01 010 |74 67 117 66 |94 96* 99 9O
0.50 | 3%4 314 332 341 | 92 90 92 90
120 | 3196 3324 3336 3217 |90 90 90 90
1.50 | 579 633 644 585 | 89 919 93 88
200 | 174 203 213 175 |89 90 93 89
3.00 | 60 75 84 59 |8* 91 95 90*
5.00 | 25 33 41 22 |93 9% 98 84
8.00 | 15 20 27 11 |91 9% 9 84
10.0 | 13 16 23 9 97 97 100 79
05 010 |24 14 19 11 100 97 99 93
050 | 112 92 94 99 |95 91 90 91
120 | 1228 1269 1271 1268 | 89 90 90 90
1.50 | 247 260 262 259 | 90 89 90 89
2.00 | 88 92 94 91 |87 90 90 90
3.00 |41 40 42 38 |95 90 92 92
5.00 | 28 21 25 20 |9% 95 95 89
8.00 | 28 15 20 13 100 91* 98  95*
10.0 | 30 14 19 11 100 97 99 92

r =ratio of therisk period to the observation period, v=1,the proportion vaccinated,

Rl = relative incidence to be detected, N5 = sample size (using formula (4.5) ),
N6 =sample size (using formula (4.6) ), N7 =sample size(using formula (4.7)),

N8=sample size (using formula (4.8) ), P5=observed power for N5, P6=observed

power for N6, P7 =observed power for N7, P8 = observed power for N8. * Saw-

tooth phenomenon (see text).
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4.4.3 Saw-tooth phenomenon

The discreteness of the data induces a phenomenon known as saw-toothing. For
example we can see from Table 4.1 that to detect a relative incidence of 2, at 80%
power, when the ratio of the risk period to the observation period is 0.05, with all
cases exposed (vaccinated), sample size formula N5 gives approximately 217 asthe
number of cases needed. The observed power by simulation was 76%, which is
slightly less than the nominal 80% power. For the same parameters, using sample size
formula N8 gives 223 as the approximate number of cases needed and the observed
power was 72%. Thus the power is not a monotone increasing function of sample
size. Thiswas observed in severa situations (marked by * in Tables 4.1 and 4.2) and
with all the other formulae derived. This phenomenon has been observed by other
researchers for example Chernic et a [55], Cesanaet a [56] , Brown et a [57] and

Hoehler [58].

The saw-tooth phenomenon means that the power function has the characteristic that
it decreases slowly and then jumps up and then cyclically repeats the decreasing trend
followed by an upward jump. The jump aways occurs at a higher level of power than
in the previous cycle. One consequence of thisis that there may be no unique sample

size.

Chernic et a [55] demonstrated that for continuous random variables, for agiven
significance level and alternative hypothesis, the power function increases
monotonically as sample size increases, but that thisis not the case for discrete

random variables. Figure 4.1 below is adapted from Chernic et al [55] showing a saw-
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toothed power function. Hoehler [58] argues that because the power function is non-

monotonic with discrete data, calculation of asingle required sample sizeis usually

impossible. We can, however, specify arange of sample sizes over which a study will

have a given power to reject the null hypothesis. To get round this problem similar
methods have recently been used to determine exact sample sizes for comparative

studies using Fisher’'s exact test (Thomas and Conlon [59]).
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Figure 4.1 Saw-toothed behaviour

4.5 Discussion

The sample size formulae derived in this chapter are not accurate. In particular, the

published sample size formula of Farrington et al [3] isinaccurate for p <lor pll

The least inaccurate of the four sample size formulae is perhaps that based on the
binomial proportion. In chapter 5 we investigate further variants of the binomial-
based sample size formula. We also explore other sample size formulae which can

allow usto include the effect of age. Age is an important confounder in studies of

1.
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vaccine safety, so it isessential that we can have a sample size formulafor the self-

controlled case series that can take account of the effect of age.
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Chapter 5

I mproved sample size formulae for the self-controlled case series
method

5.1 Introduction

The sample size formulae derived in the previous chapter are not accurate. Hence we
sought other sample size formulae that we hoped would be more accurate. In this

chapter, we present these other formul ae.

In section 5.2, we derive a sample size formula based on binomial proportions but
with continuity correction. In section 5.3 we derive a sample size formula al so based
on binomial proportions but based on the arcsine variance stabilizing transformation.
In section 5.4 we derive a sample size formula based on the signed root likelihood
ratio statistic. A comparative evaluation of the three formulaeis given in section 5.5.
The likelihood ratio statistic based sample size formulais then generalised to include
allowance for age effectsin section 5.6. This formulawith age effectsis evaluated in

section 5.7. We discuss our findings in section 5.8.

5.2 Sample size formula based on the binomial proportion with continuity

correction.

Fleiss et a [54] argue that the Type | error of sample sizeformula (4.8) is
conservative, and this can be improved by a continuity correction. We thought this

could be one of the reasons why formula (4.8) was not very accurate. With continuity
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correction, according to Fleiss et a [54], sample size formula (4.8) can be written as

shown below:

2
m=leliy e 2| Melyy by 2 (5.1)
4 n, |7z, — 7| 4 o [F(p-0-r)

‘| rp+l-r

where n, isthe value obtained from sample size formula (4.8) and n, isthe sample

Size with continuity correction. As beforer istheratio of therisk period to the
observation period. Note that (5.1) is derived under the same assumptions as those

used to derive sample size formula (4.8).

5.3 Sample size formula based on the binomial proportion with arcsine

transformation.

As described in chapter 4, in the simplified setting we are considering, the log

likelihood is equivalent to that of abinomial with proportionz = pr /(pr +1-r)and

index n,. A popular approach to improve the normal approximation to the binomial is
to use the arcsine variance-stabilizing transformation [60]. In this situation the test
statisticis

T =arcsin (\/; ) :
under the null hypothesis

T ~N(acsin(Vr),1/4n,},

while under the alternative,
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T=N (arcsin(\/pr I(pr +1—r)),1/ 4ne) . Thus we obtain the following

expression for the sample size formula:

n = (Zl—a/Z + Zy)z (52)

S 4[arcsin(\/pr/(pr+1—r))—arcsin<\/F)}2

5.4 Sample size formula based on the signed root likelihood ratio

A limitation of all sample sizes based on the binomial log likelihood is that they are
not readily extended to handle age effects, since the likelihood is then multinomial.
Furthermore, the most convenient test to use to decide whether the exposureis
associated with the outcome is the likelihood ratio test. Thus it makes sense to base

the sample size on the likelihood ratio statistic (4.2) given in chapter 4. Under the null
hypothesis, the likelihood ratio statistic hasthe x? (1) distribution, asymptotically. To
obtain an asymptotically normal test statistic, we use the signed root likelihood ratio
derived as follows.

The log likelihood kernel for the parameter # given in (4.1) of chapter 4 can be

written as,

() = xB—n,log(e’r +1-r). The score function is

ne’r
=X——"
er+l1-r

,and solvingU (,B) =0we have/}: Iog(n X 1_Trj
L — X

Hence the likelihood ratio statistic for the null hypothesis H,: #=0 is

D =2{£(/3’)—£(0)} :Z{XB—nelog(ef}r +1—r)}
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D= 2{x|og(x)+(ne —-x)log(n, —x)+xlog(l_Trj—nelog(ne(l—r))}.

Under H,, D 72, so sgn(3)~/D [ N(0,1) where

+1 if3>0
sgn(#) =10  if f=0
-1 if f<0

Assume that under H,, 8> 0, and that asymptotically sgn(3)~/D 0 N(&,72)for some

&, 7 to be determined later.

Write
f(x) =sgn(A)VD =sgn(A)\/2P(x)

P(X) = xlog(x)+(ne—x)Iog(ne—x)+xlog(l_Trj—nelog(ne(l—r))
Recall that E(X) may be written

u=E(X)=np

where p= il and p=¢€’.
rpo+1-r

Then, using the delta rule (Matthews[60]), to first order

F(X)0f () +(X—p) £ (1) (5.3)
hence

E(f(X))0 f(u).

Now

P(x) =n,plog(p) —n,log(pr +1-r)

and asymptotically, under H,, sgn(,B) =sgn(f). So

E( (X)) sgn(B)y/2P(1).
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Also, from (5.3),
[FO)=F ()] D (X =) ()’
hence

var[ f(X)]0 var(X) ()" =n.paf’ ()’

2 _1P(w? _[log(p)]

Now ) =5 By = 2P

npa(log(p))” _ pa(log(p))”
2P(u) 2[ plog(p) —log(pr +1-r)]’

hence var[ f (X)]0

Thus the test statistic sgn(,Bx/B) iss distributed approximately N (&,7%) under H,,

with

_ - — pa(log(p))”
f_sgn(ﬁ)\/Zne[plog(p) log(pr +1-r1)], 7 = 2 plog(p) —log(or +1-1)]

por

Let A=2[plog(p)-log(pr +1-r)

I 2
],B:Mandasbefore p=

Also let C bethe critical point of sgn(,B)«/B , and for simplicity assume > 0.

It follows that 1—% =P(sgn(B]D > C|H,)=P(Z > C) asthestatisticis

approximately N(0,1) underH,. SoC= Zl . -Also, for power 21—y, thecritical
2

point C must satisfy 1—y < P(sgn(B)\/B >C| Hl) = P(Z > C_ﬂ.
T

So C;§ <-Z . Itfollowsthat C=-Z VB +nA

Equating the two values of C and solving for n, gives the following sample size

formula based on the signed root likelihood ratio:

pr+l1-r
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(22 B

. A (5.4)

If we include the proportion of the population vaccinatedv, the above formula can be
generalised to the formula shown below:

2
N vr(p-1)+1 (Zlfalz +Zy\/g)

- v(rp+1-r) A (5

Note that n and n, from expressions (5.4) and (5.5) are in the ratio determined by (4.3)

from chapter 4. We can see from (4.3) that if v =1, that is everyone is vaccinated,

thenn=n,.

5.5 Compar ative evaluation of sample size formulae (5.1), (5.2), and (5.4)

In this section, we evaluate the performance of the sample size formulae (5.1), (5.2)
and (5.4). We tested the performance of the sample size formulae using simulationsin
exactly the same way as described in section 4.4.1 of chapter 4. In all simulations we

assumed all individuals were exposed, hencev=1.

5.5.1 Resultsfrom the simulation study.

The results for 80% power are shown in Table 5.1, and those for 90% power are
shown in Table 5.2. Asin chapter 4, the numbers of cases calculated from sample size
formulae (5.1), (5.2), (5.4) for aparticular relative incidence to be detected are given

in columns labelled N1, N2, and N4. The corresponding observed powers (in %) from
simulations are given in columns labelled P1, P2, and P4 . We can see a marked

improvement in terms of the observed power for each sample size formula derived
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here. AlImost al parameter values gave accurate power (one exception isthe
combination of r =0.01and RI =0.1). This shows that the sample size formula based
on the binomial with continuity correction, or that using the arcsine variance
stabilizing transformation, or that based on the signed root likelihood ratio statistic
would give an accurate sample size. Note that the saw-toothed phenomenon
mentioned in chapter 4 is still present for sample size formulae (5.1), (5.2) and (5.4).
In the next section, we extend the sampl e size formula based on the signed root

likelihood ratio statistic so as to take account of age.
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Table 5.1 Empirical power for 80 per cent nominal value

r RI N1 N2 N4 Pl P2 P4
% % %

001 0.10 | 609 420 462 | 88 67 92*
050 | 2618 2299 2394 |81 80 81

120 | 21031 21801 21537 | 80 80 80

150 | 3638 3944 3835 |80 80 79

200 | 1015 1167 1111 |78 81 80

3.00 | 302 377 348 | 78 79 80

5.00 98 135 119 |80 77+ 82

8.00 42 63 54 |82 80 81

10.0 29 46 38 |79 80 79

005 0.10 | 119 84 92 |82 78 79
050 | 529 469 487 | 84 80 82

120 | 4431 4580 4529 | 79 81 80

150 | 779 838 817 79 81 79

200 | 223 253 242 | 81* 80 79

3.00 69 85 79 |80 84 80

5.00 24 32 29 180 82 80

8.00 12 17 14 |75 80 81*

10.0 9 13 11 | 78 79 78

01 0.10 58 42 46 85 82 83
050 | 269 241 250 | 81* 82 84

120 | 2371 2441 2417 | 79 80 80

150 | 425 453 443 7% 80 79

200 | 125 140 134 75 81 80
3.00 41 49 46 80 81 80
5.00 16 20 18 78 79 84*

8.00 8 11 10 81* 81 78*

10.0 7 9 8 79 79 80

05 010 10 9 9 81 80 80
0.50 69 68 69 81 79 81

120 | 948 947 948 80 80 80

150 | 194 194 194 80 80 80

2.00 69 68 69 81 776 81

3.00 30 29 29 |77 81* 81

5.00 16 15 15 |76 79 79

8.00 11 10 10 |80 80 80

10.0 10 9 9 78 81 81*

r =ratio of therisk period to the observation period, v=1, the proportion vaccinated,

Rl = relative incidence to be detected, N1=sample size using formula (5.1) ,

N2 =sample size using formula (5.2), N4 =sample size using formula (5.4) ,

P1=observed power for N1, P2 =observed power for N2, P4 =observed power
for N4. * Saw-tooth phenomenon.
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Table 5.2 Empirical power for 90 per cent nominal value

r RI N1 N2 N4 PL P2 P4
% % %

001 0.10 | 688 562 571 95 90* 89*
0.50 | 1001 861 882 |91 91* 90*

120 | 28641 29185 28993 | 90 90 90

150 | 5062 5279 5197 |90 91 90

200 | 1453 1562 1517 | 88 89 90

3.00 | 450 505 480 |8 89 90*

5.00 | 152 180 166 | 87 91 91

8.00 68 85 76 | 91* 90* 90

10.0 48 61 54 |88 90 89

005 010 | 135 113 114 | 92 87 87
0.50 | 669 628 639 |92 90* 89*

120 | 6026 6131 6094 |90 90 90

150 | 1079 1122 1106 |88 90* 91*

200 | 316 338 329 |89 90 89*

3.00 | 101 113 108 | 84 91 91

5.00 36 43 40 |86 91 90

8.00 18 22 20 |90 93 90

10.0 13 17 15 |8 89 93

01 0.10 66 56 57 |94 87 89
050 | 341 323 328 | 92 90 92

120 | 3217 3268 3250 | 90 90 90

150 | 585 606 599 | 89 90 90

200 | 176 187 182 |89 89 90*

3.00 59 65 62 |85 91 89

5.00 23 26 25 |93 89 91

8.00 12 14 13 |91 94 90*

10.0 9 11 10 |93 91* 89

05 010 12 12 11 92 92 93
0.50 91 91 91 99 91 91

120 | 1268 1268 1268 | 89 90 90

150 | 259 260 259 90 90 90

2.00 91 91 91 90 90 90

3.00 38 39 38 92 91 92*

5.00 20 20 20 |89 89 89

8.00 14 14 13 |91 91 90

10.0 12 12 11 | 92 92 92

r =ratio of therisk period to the observation period, v=1, the proportion vaccinated,

Rl = relative incidence to be detected, N1=sample size using formula (5.1) ,
N2 =sample size using formula (5.2) , N4 =sample size using formula (5.4) ,
P1=observed power for N1, P2 =observed power for N2, P4 =observed power

for N4. * Saw-toothed phenomenon.
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5.6 Sample size formula with age effect

All the sample size formulae derived so far apply to asimplified situation in which
there are no age effects. In practice, strong age effects may be present. Such age
effects can have a big effect on study power, and must be taken into account in sample
size calculations. We have seen so far that sample size formulae (5.1), (5.2), and (5.4)
give accurate sample sizes in the ssimplified scenario. Expression (5.1) and (5.2) are
based on binomial proportions, and thus cannot readily be extended to alow for age
effects, since the likelihood then becomes product multinomial. However, sample size
formula (5.4) based on the likelihood ratio test can be extended to allow for age

effects.

In line with the parametric case series models described in chapter 2, in which age
effects are modelled using a step function, we shall assume that the age-specific
incidence is piecewise constant. In practical applications, we have found this approach

for specifying the age effects both convenient and flexible.
5.6.1 Assumptions and notation

We again consider asimplified scenario, but involving age effects. We assume that all
individuals are followed over the same observation period, which covers J age groups

of duration g, j =0,1,2,...,J —1. Suppose that the probability that an individual is

exposed in age group j is p;. The probability that an individual, randomly selected

J-1
from the population, is exposed during the observation period isv = Z p,- We
j=0
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suppose furthermore that if an individual is exposed in age group j, the post-exposure
risk period, of length€’, is entirely contained within age group j. This assumption
greatly simplifies the cal culations, by avoiding any overlaps. It impliesthate’ <e, for
all agegroupsj =0,1,...,J —1. This should not be too restrictive in practice, at least

when the risk period is short.

Finaly, leto; denote the logarithm of the age-specific relative incidence, relative to
age group 0, so that ¢, = 0. We assume that these age effects are known. As before,

let p = €’ denotes the relative incidence associated with the exposure, and Sits

logarithm.

5.6.2 Sample size formula allowing for age effects

The full derivation is given in Appendix 2. The sample size formulainvolves the

following intermediate quantities. First, letr; denote the weighted ratio of time at risk

to the overall risk period:

Note that if there are no age effects(¢; =0 for all j) thenr; =r,theratio of therisk

period to the observation period defined in chapter 4 and section 5.2 of this chapter.

Second, let z; denote the probability of an individual exposed in age group j that an

event arising in age group j occurs during the exposure period:
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r.
7, :‘—’0, j=01..J-1

rp+l-r,
If there are no age effects, thenr; = 7, the binomial probability defined in chapter 4.

Finaly letv, denote the probability that a caseis exposed in age group j :

Arp+1-r.
Vo= p’('p ‘) , 1=01,...,J-1. (5.6)

J J-1
Po +Z Ps (rsp+1_ rs)
s=0

Note that if there is no association between exposure and outcome, so that p =1, then
v, = p,, the population proportion exposed. If there is an association, however, the
age distribution of exposure in the cases will usually differ from that of the general

population. If there is no age effect, thenv, =n,/nfrom expression (4.3) of chapter 4.

Now define the following constants A and B:

Az Zivs [”Slg_log(rseﬁ +1- rs)}

s=0

(5.7)

Note that when there are no age effects and al individuals are exposed (sov=1), then

A reduces to the expression A and B reduces to the expression B given in section 5.4.
The total number of eventsrequired for 100y% power at the 100r% significance

level is
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n = (217“/2 * ZV\/E)Z
e A "

If there are no age effects, (5.8) reduces to expression (5.4).
5.6.3 Sample size formulae for the number of cases

So far we have presented formulae for n, the number of events. To obtain a sample

size formulafor the number of cases, an estimate of the cumulative incidence over the
observation period isrequired. Let A denote this cumulative incidence. Then under the
Poisson model, the number of cases required (that is, the number of individuals with

one or more events), n.is

n.=n :
A

Thus n, <n. Generdly, Aisnot known with any accuracy. In practice, most

applications of the case series method are to situations where A is very small, in which

case n, [l n. Furthermore, the independence of repeat events may be open to doulbt.

For these reasons, we would generally advisetaking n, =n.

5.7 Evaluation of sample size for mula with age effects

5.7.1 Simulation study

We evaluated the sample size expression (5.8) as follows. As before, we assumed an

observation period of 500 time units, but now partitioned into J =5age intervals of
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100 units. We fixed the age-specific proportions p; of the population exposed, and

assumed that all individuals in the population are exposed, but varied the age effect:
increasing, symmetric and decreasing. The parameter values we used are shown in

Table 5.3 below.

The risk period duratione” must be less than the shortest age group, and were set at 5,
10, and 50 units. For comparability with Tables 5.1 and 5.2, these are reported as
proportions of the overall observation period and are denotedr . Thus

r =0.01,0.05 and 0.1. The values for p were the same as in the previous simulations,
but here we only present results from the values of p =0.5,1.5,2,3,5,10. We evaluated

the sample size for powers of 80 and 90 per cent, at 5 per cent significance level. In

this situation, the combination of three values of r , six values of p , two powers, and

three age effects required 108 different ssmulations; each involved 5000 runs.

Table 5.3 Exposure and age effects used in the simulations.

Parameter Agegroup j
0 1 2 3 4
Proportion exposed, p; | 0.35 030 0.20 0.10 0.05
Age effect, €”
Increasing 1 2 3 4 5
Symmetric 1 2 3 2 1
Decreasing 1 1/2 1/3 14 1/5

The sample sizes were cal culated using expression (5.8) and were rounded up to the
next integer. For each simulation, we randomly and independently allocated the
exposure to an age group and the event to an age and exposure group combination.
Since the simulations are conditional on an event occurring, we used the age-specific

exposure probabilities defined by expression (5.6) to perform this allocation. We then
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fitted the case series model with five age groups (and thus four age parameters), and
carried out the likelihood ratio test of the null hypothesis p =1. The Monte Carlo

standard error for the empirical power is about 0.57 per cent at 80 per cent power and

0.42 per cent at 90 per cent power.

5.7.2 Results

The sample sizes and empirical powers are shown in Tables 5.4 and 5.5 for 80% and
90% power respectively. Note that, since v=1, n=n,. Theempirical powers
generally correspond closely to the nominal values, across the range of parameter
values and age settings. There is one exception, namely the rather low (72-73 per
cent) power obtained for r =0.01when p =10. This occurred only for nominal power
of 80 per cent, but not for 90 per cent power, with age effects, but not when there are
no age effects. We have no definitive explanation for this observation, but we suspect
it might be due to confounding with age when the expected number of eventsin the
risk period is very small, or to the distribution of the data. In practice, it is most

unlikely that a design value of p as high as 10 would be used.
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Table 5.4 Sample sizes and empirical powers for 80% nominal power

Age effect
Increasing Symmetric Decreasing
r P n, Power n, Power  n, Power
001 05 3267 812 2398 815 1825 81.2
15 5219 808 3842 791 2936 77.6
2 1509 782 1113 8038 852 78.0
3 471 794 348 79.0 268 79.9
5 161 799 119 79.5 92 78.7
10 51 722 38 73.1 30 72.5
0.05 0.5 667 80.2 491 81.5 379 80.6
15 1103 800 825 80.0 649 79.2
2 324 789 244 78.9 193 78.8
3 104 811 80 78.6 64 785
5 38 773 29 77.2 24 78.2
10 13 795 11 79.5 10 81.1
01 05 343 789 254 79.4 200 78.6
15 592 789 452 78.2 370 79.6
2 177 80.3 137 79.8 114 80.2
3 59 80.8 47 79.1 40 80.4
5 23 788 19 79.4 16 78.8
10 9 777 8 79.0 7 77.1
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5.5 Sample sizes and empirical powers for 90 per cent nominal power.

Age effect
Increasing Symmetric Decreasing
r P n, Power  n, Power n, Power
0.01 05 4276 90.6 3139 89.0 2390 91.3
15 7073 89.7 5207 89.3 3978 89.5
2 2062 91.1 1520 88.8 1163 90.2
3 651 89.6 481 89.5 369 89.7
5 224 89.9 167 91.1 128 90.7
10 72 89.9 54 89.6 42 88.7
0.05 05 874 89.7 644 90.4 497 90.4
1.5 1493 90.3 1116 89.5 877 89.2
2 442  90.2 332 88.9 263 89.5
3 143  91.2 109 89.9 87 87.4
5 52 88.2 40 91.7 33 88.0
10 19 88.9 15 90.7 13 89.5
0.1 05 450 89.7 334 89.9 263 90.2
1.5 800 89.3 611 89.9 498 89.2
2 241 894 186 90.6 154 89.5
3 81 90.8 64 90.5 54 90.2
5 31 90.5 25 90.1 22 89.7
10 12 87.3 11 90.7 10 89.1

5.8 Conclusion

Sample size formulae for the self-controlled case series method have been discussed

in chapter 4 as well asin chapter 5. In chapter 4, we saw that the sample size formula

published by Farrington et al [3] was not accurate, neither were the sample size

formul ae based on the distribution of ,B with both first and second order

approximations, or the sample size formula based on the binomial proportion without

continuity correction or variance stabilizing transformation. In this chapter, we have

shown that sample size formula based on the binomial with continuity correction and

that with arcsine variance stabilizing transformation are accurate. Equally accurateis

the sampl e size formula based on the signed root likelihood ratio statistic which can
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be generalized to take account of age effects. We have seen that the type of age effects
has a big impact on the sample size required, as shown in Table 5.5. For example (See
also Musonda et al [44]), suppose the observation period includes the ages 366-730
days, divided into 4 age groups J =3 with periods of lengths g, =€ =e, =91days,
and e, =92 days. Suppose we took the proportions vaccinated in each of the age
intervalsto be p,=0.6, p, =0.2, p, =0.05, p, = 0.05. Further take the age effects to
be e =1,€" =0.6,6” =€™ =0.4, and therisk period €" = 42 days, and

setp=372 ,,=196andZ, =0.8416 for 80 per cent power to detect arelative
incidence of 3 at the 5 per cent significance level. With these values, we findn, =37,
but if we ignored the age effect, we would obtainn, =45. Thusit isimportant to

allow for such age effectsin calculating the sample size. In conclusion, we
recommend the sample size formula based on the signed root likelihood ratio, as

shown in expressions (5.4) and (5.8).

Our empirical power calculations were based on the likelihood ratio test. In practice,
statistical significance is sometimes assessed by calculating the 95 per cent confidence
interval for the relative incidence, and observing whether this confidence interval
includes 1.We also evaluated our recommended sample size formula using this second
criterion. The empirical powers were generally close to the nominal values, except for
large relative risks and or very short risk periods when such confidence intervals can

be markedly non-central as shown in chapter 3.

In calculating the sample size allowing for age effects, we assumed that the age

effects were known, so as to obtain a one-parameter likelihood. In practice, the age
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effects must be estimated. We had expected this to have some bearing on the results,
in that some information in the sample is used to estimate the age effects. In the event,

this effect is small.

A limitation for sample size formula (5.8) is the requirement that the risk period is
shorter than the age groups involved. Another is that we have assumed that thereis a
single risk period. In practice, it is common to use several, usually rather short, risk
periods. However, it is often possible to select asingle, short risk period of special
importance, on which to base the sample size calculations. If long risk periods are
required in situations where age effects must be allowed for, our proposed sample size

formula may not apply without further modification.

We recommend the sample size formula based on the signed root likelihood ratio
statistic for use both when there is no age effect and where there is an age effect. In
particular, the sample size formulae in this chapter help to emphasize the importance

of taking age into account at the design stage.
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Chapter 6

Application of the self-controlled case series method in surveillance

6.1 Introduction

In this chapter we aim to describe how we can use the self-controlled case series
method in prospective surveillance. In section 6.2, we briefly describe the use of
surveillance systems to monitor vaccine safety and relate this to the self-controlled
case series method. We also identify the possible problems of using the self-controlled
case series method for prospective surveillance. The background and review of
various statistical methods used for surveillance are given in section 6.3. Section 6.4
describes the sequentia probability ratio test (SPRT) and the theory behind the SPRT
IS given in section 6.5. Description of the application of the SPRT is given in section
6.6. Section 6.7 explores using the self-controlled case series adjusting for age. In
section 6.8, we show results from a simulation study demonstrating possible

parameter values for a surveillance system, and conclusions are drawn in section 6.9.

6.2 Survelillance systemsfor adver se events

Two examples of surveillance systems for vaccine—associated adverse events are: the
Yellow Card system in the UK and the Vaccine Adverse Event Reporting System
(VAERYS) inthe US[61]. The Yellow Card Scheme was introduced in 1964 to

provide a straightforward route for a doctor or dentist and later any member of the
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public to report a suspicion that a medicine could have harmed a patient. The Y ellow

Card Scheme (http://www.yellowcard.gov.uk) is run by the Medicines and Healthcare

products Regulatory Agency (MHRA).

The Vaccine Adverse Event Reporting System (http://vaers.hhs.gov) is a cooperative

program for vaccine safety of the Centres for Disease Control and Prevention (CDC)
and the Food and Drug Administration (FDA) in the US. Like the Yellow Card
system in the UK, VAERS collects information about adverse events that occur after
the administration of US licensed vaccines. A similar scheme on the international
level is conducted by the World Health Organisation (WHO) at the Uppsala

Monitoring Centre [62].

The data collected in these systems are not independent of the exposure since only
events occurring after exposure to the drug are collected. Data are usually collected
from amixture of populations, and there is no denominator data. There may be no
confirmation of the reported adverse events. Such data sets may suffer from
underreporting and differential reporting [63, 64]. Thereis no control group for
comparison of adverse event rates [65, 66]. Over reporting may also occur because
some reported conditions might not meet standard diagnostic criteria[64]. Thereis
also lack of information on background incidence of adverse eventsin the general
population and information concerning the total number of doses of vaccines or
vaccine combinations actually administered. For these reasons surveillance systems
such as VAERS and Y ellow Card Scheme cannot be readily used to determine

whether associations between vaccines and reported adverse events are causal.
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Surveillance system such as VAERS and Y ellow Card Scheme are neverthel ess useful
for generating hypotheses to be tested in other settings such as the Vaccine Safety

Datalink (VSD), or through specially designed epidemiological studies[33, 67].

In this chapter and the next we discuss how the self-controlled case series method can
be applied to the surveillance of adverse events following vaccination. Theaimisto
obtain better evidence of causality than available from systems such asthe Yellow

Card or VAERS, while remaining in a prospective setting.

There are possibly two ways in which the self-controlled case series method can be

applied for surveillance. These are:

1. Prospective surveillance of a new vaccine.
2. Long term surveillance to identify changes in the performance of one or

several existing vaccines.

In the first situation, there is a specific hypothesis to be tested, for example relating to
Intussusception following the introduction of a new rotavirus vaccine [68, 69]. In the
second situation, one might be interested in monitoring a range of possible exposures,
not a single one, to check that none of the vaccines in current use are associated with
some adverse outcome. In this situation, monitoring may concern several outcomes
with no specific hypotheses. For the second scenario, one needs to protect against

false positive alarms more than for the first scenario.
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Both the above scenarios can use data that are centrally collected in one or several
databases, for example the Hospital Episode Statistics (HES) data, UK General
Practice Research Database (GPRD), immunisation data which is independent from
clinical records such as the Vaccine Safety Datalink (V SD) database, datafrom
Patient Administration System (PAS), and Coded Clinical Records (CCR). Data
collected routinely as in these databases are the best to use because ascertainment is
likely to be independent from the exposure. The main difficulty is how to use the self-
controlled case series method, which is a retrospective design, in a prospective

surveillance context.

6.3 Background and review of some surveillance methods

Statistical methods can play an important role in detecting changes in many processes,
including mortality and adverse event rates. Some surveillance methods have an
established history of use with health care, while there is growing interest in others
such as statistical process control (SPC) methods. The retrospective use of SPC by
Spiegelhalter et a [70] provides an excellent example of the potentia role that risk-
adjusted control charts could have played in earlier detection of higher mortality rates

in the Bristol Royal Infirmary and in the genera practice of Harold Shipman.

Statistical control charts were first developed in the 1920s by Walter Shewhart at Bell
Laboratories [71] and have been widely used by Deming [72]. Shewhart and Deming
independently recognised the value of these methods for detecting statistical changes
in many applications, though they were initially intended for use in industrial and

chemical processes. Asearly as 1942, Deming [73] recognised their potential value
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for disease surveillance and rare events. Important health care concernsin which
control charts have been shown to be effective include surgical site infections, adverse

drug events, needle stick injuries, and ventilator-associated pneumonia [ 74].

Some studies have attributed the growing use of SPC in the medical context to the
staggering incidence and cost of medical mistakes [75], care induced injury, and
hospital acquired infections. For example it isreported [75] that in the US alone,
between 770 000 to 2 million patients are injured per year, 44 000 to 180 000 deaths,
and the cost of all these accidents/incidentsis estimated to be about $8.8 billion

annually [76-78].

Surveillance systems such asthe Y ellow Card and VAERS all make use of suitable
statistical methods to identify possible signals. For example measures of
disproportionality including Proportional Reporting Ratio (PRR), Reporting Odds
Ratio (ROR), and Yule' s Q, along with more complex Bayesian methods are

currently applied in various national spontaneous reporting centres [79-82].

Another approach for continuous systematic review of all combinations of drugs and
suspected adverse reactions (ADRS) reported to a spontaneous reporting system to
optimize signal detection makes use of Bayesian methods. This works by relating the
prior and posterior probabilities before and after linking databases. It is currently
being used by the Uppsala Monitoring Centre (Bayesian Confidence Propagation

Neural Network analysis BCPNN) [83-85].
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Cumul ative monitoring approaches based on control charts of different kinds are
widely used. For exampleit iswell known [75] that the simplest types of statistical
control charts, called Shewhart charts, perform fairly well for detecting moderate-to-
large rate changes in the parameter of interest. In some industrial applications, more
advanced tools such as sequentia probability ratio test (SPRT), cumulative sum
(CUSUM) charts are used to detect smaller changes, to monitor low rates, or in
situations where sufficiently large sample sizes are not available. Examples of health
care CUSUM applications include surveillance of seasonal influenza[86, 87] ,
community Salmonella[88], and fever curvesin neutropenic patients. Various new
SPC methods have been devel oped for non-standard applications dealing with rare
events, infectious diseases and other event that naturally occur in clusters,
overdispersion, naturally cyclic behaviour, and risk adjustment [70]. Related SPC
methods have also been developed to handle non-homogenous event in

manufacturing, such as for different production lines.

Another motivation for cumulative monitoring approaches is to accommodate rare
events that otherwise would require large samples to yield adequate statistical
sensitivity. SPRTs and CUSUMs are excellent for this purpose, and several other SPC
methods also have been developed for rare events. Many of these are based on some
variation of the idea of monitoring the number of cases or time between adverse
events rather than the more traditional approach of monitoring the number of events

or deaths within afixed time period or accumulating sample size [89, 90].

The SPRTs and CUSUM s are the most adaptable cumulative monitoring methods to

use with the self-controlled case series method. Thisis because they are based on the

133



likelihood ratio. We adapt them by using the likelihood of the self-controlled case
series method. In this chapter, we shall concentrate on the SPRTs and in chapter

seven, we will describe how to use the CUSUMS.

Charts derived from the sequential probability ratio test have been widely used in
industry to monitor process performance. The SPRT is used both when the monitoring
is continuous and items can be inspected one by one, and when items are inspected in
agroup after afixed time interval. Studies have shown that charts based on the SPRT
will signal an out-of-control process earlier than either the Shewhart p-chart or the
CUSUM chart [91]. Recently there has been increased attention paid to the use of the
CUSUM and SPRT chartsin amedical context [74, 88, 92]. The SPRT isthe most
powerful method for discriminating between two hypotheses [ 70, 93], and was
recommended well over 40 years ago in amedical context for clinical trial and

clinical experiments [94, 95]. In the next section, we describe charts derived from the

SPRT by first looking at the theory behind SPRT.

6.4 The sequential probability ratio test (SPRT)

Formal statistical methods for sequential analysis were developed in 1943
independently by Barnard in the UK and Wald in the US[93, 96]. Suppose we arein a
Situation where we have two hypotheses, the null hypothesisH,and the alternative
hypothesisH, . Interest is on deciding whether to accept the null hypothesis or reject

the null hypothesis (hence accepting the alternative). The idea behind sequential

testing is that we collect observations one at atime; when observation X, = x has

been made, we choose between the following options:
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o Accept the null hypothesisH,, and stop observation.
e Accept the alternative hypothesisH, and stop observation.

o Defer decision until we have collected another piece of information X, ;.

The challenge of courseisto find out when to choose the above options. To do that,

one has to control for two types of error:

o = P{Accepting H,when H,, istrue} (Type | error), and

B =P{Accepting H, when H, istrue} (Type Il error).

Note that it is common in this context to treat H, and H, symmetrically. More
formally, suppose we consider asimple hypothesis H,, : 8 = g,against asimple

aternativeH, : @ = 6,. The standard likelihood ratio test has critical region of the form

L(6,; X, X..)
L(6,; X, X,)

> K

Z =log

for some constant K and X,,..., X,, arenindependent observations on the random
variable X . Theexpression L(6;; X,,..., X,,) represents the likelihood when H,istrue
and the expression L(6,; X,,..., X,,) represents the likelihood when H,istrue. Note

that assuming independence the log likelihood ratio Z is the cumulative sum

Z =log LX) +...+log L6:X,) :
L(6; X,) L(65; X,)
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Now consider X, X,,... being successive observations obtai ned sequentially. Wald's

[45] sequential probability ratio test has the following form:

e If Z >log(A),decidethat H,istrueand stop;
e If Z <log(B), decidethat H,istrue and stop;

e If log(B)<Z, <log(A), collect another observation to obtain Z

n+1?

where Aand B are two constants such thatlog(B) <log( A) . The constants Aand

B are to be determined so that the test will have the prescribed strength( e, 5) .

It can be shown that the SPRT isoptimal [45, 75, 91, 92] in the sense that it
minimizes the average sample size before a decision is made among all sequential test
which do not have larger error probabilities than the SPRT. An essential feature of the
sequential test isthat the number of observations required by the sequential test
depends on the outcome of the observations and is, therefore, not predetermined, but a
random variable [45]. Thisis because at any stage, the decision to terminate the

process depends on the observations made so far.
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6.5 Theoretical propertiesof the SPRT

6.5.1 Therelations between the quantities &, 8, A,B in an SPRT

Following Wald' s [45] derivation, suppose welet f (X,#) denote the density of the
random variable X under consideration for some parameter €. As beforelet H,be

the hypothesis that 6 = §,, and H, the hypothesisthat 6 = 6, . We can thus denote
f(X,6,) asthedistribution of X giventhat H,istrueand by f(X,&,) isdistribution

when H,istrue. Successive observationson X shall be denoted by X, X,,...,.

Further suppose for any integer valuem, the probability that asample X, X,,..., X,,is

obtained is given by
P = F(X.,6)...T(X,.6) when H,istrue,
and by

Pom = F(X,,6,)...T(X,,,6,) when Histrue.

Suppose we say that the sample (X, X,,..., X,) isof type Oif

< Pim _ 1(X,6)... T (X, ) <Aform=1,...,.n-1and ﬁs B.
P T(X0,6).. (X, 6) Pon

Oom

Similarly, we shall say asample (X,,..., X,,) isof type 1 if
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< Pin _ F(%,,6)...1(X,6) <Aform=1,...,n-1and &2 A.

Pn  F(X1,6,)F(X,,6) Pon

Hence it follows from that a sample of type 0leads to the acceptance of H, and a
sample of the type 1leads to the acceptance of H, . For any given sample

(Xy,..., X)) of typel, the probability of obtaining such a sample isthereforeat least A
times as large under hypothesis H, as under H,. As shown by Wald [45], the

probability measure of the totality of al samples of type listhe same asthe

probability that the sequential process will terminate with acceptance of H,. But the
latter probability isequal to o when H,istrueand to 1- # when H,istrue. Thisis

by definition of « and # and because the probability that the sequentia process will

eventually terminate is one. Hence,
1->2Ax .

Theinequality above can be written as

As% (6.1)

andso =2 isan upper limit for A
o

Similarly, alower limit for B can be derived asfollows.

For any given sample ( X,..., X,,) of type0, the probability of obtaining such a
sample under H,isat most B times aslarge as the probability of obtaining such a

sample when Histrue. Thus, also the probability of accepting H,isat most B times
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aslargewhen H,istrue aswhen H,istrue. Since the probability of accepting H,is
1-aowhen H,istrueand fwhen H,istrue, we obtain the inequality

f<(l-a)B
It follows that

s
B S (6.2)

B

and thus = isalower limitforB.
1-«

The inequalities (6.1) and (6.2) have been derived under the assumption that the
successive observations X, X,, ..., €tc, are independent. It can be shown [45] that the
vaidity of theinequalities (6.1) and (6.2) is not restricted to the case of independent

observations. They are generally valid also for dependent observations.

6.5.2 Calculating the constants A and B

Suppose that we wish to design atest procedure of strength( e, ) . Then our problem

isto determine the constants Aand B such that the resulting test will have the desired

strength(¢r, B) . Let usdenote by A(er, #)and B(«, f) thevaluesof A and B,
respectively, for which the test has the required strength (¢, 3) . The exact
determination of thevalues A(«, ) and B(¢, ) isusualy very laborious[45].
However, the inequalities (6.1) and (6.2) permit an approximate determination of

A and B which will suffice for most practical purposes. From(6.1) and (6.2), it

follows that

139



A(a:,,b’)sﬁ and B(ox,,B)zli . It can be shown [45] that for most practical
a —a

purposes, the constants A and B are approximately equal to:

Auﬂ andBDi .
o 1-o

Using approximate values of A and B instead of exact values results in some error in
the Type | and Typell probabilities. Let us denoteby «” and 3’ the resulting
probabilities of errors of Type | and Type Il respectively for using approximate

valuesof Aand B. From (6.1) and (6.2) it follows that

¢ <2 ad (6.3)
1-4 1-p
'BI,S—'B : (6.4)
1-o 1-«a

a’Sﬁ and (6.5)
ﬂ'sm : (6.6)

Multiplying (6.3)by (1-3)(1- ') and (6.4) by (1-«)(1-¢’) and adding the two

inequalities, we obtain

o+ <a+p. (6.7)
Theinequalities(6.5), (6.6), and (6.7) give useful upper limitsfor o’ and #". Wald

[45] argued that since in practical applications, the values « and S will usualy be
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small, probably in the range 0.01 to 0.05, thus 105’B and 1'8 will be very nearly
- =’

equal o and 3, respectively. Inequalities (6.5) and (6.6) indicates that the amount
by which &’ may exceedor, or 8" may exceed Sissmall and can be neglected for
practical purposes. In fact, inequality (6.7)impliesthat at least one of theinequalities
o <o and ' < S must hold. In other words, by using the approximate values of
A(a, B) and B(«, ) instead of exact values of A(«r, ) and B(«, ), respectively, at

most one of the probabilities o and S may be increased.

Wald [45] concluded that the use of approximate values of A(e, #)and B(«, 5),

instead of exact valuesof A(e«, ) and B(«, B)respectively, cannot result in large

increase in the value of either « or £. This means, for all practical purposes the test

correspondingto A= =5 and B= 1i provides at |east the same protection
o

against wrong decisions as the test corresponding to the use of the exact values of

AandB.

The other possible consequence of using approximate values of A(e, ) and

B(«, f) instead of exact values s that this may result in an appreciable decrease of

either or both error probabilities. If this were so, it would mean only that the test

based on the approximate values A= =5 and B= 1i would provide a better
o -a

protection against wrong decisions than the test based on the exact values. The only

possible disadvantage is an appreciable increase in the number of observations
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required by the test. But this has been theoretically investigated [45] and it has been

shown that such an increase in the number of observation is only slight and of no

practical consequence. Thus the test based on the approximate values A= =5 and
o
B= 1i serves the purpose just as well, and the determination of exact valuesis of
-a

little practical importance.

The ideas devel oped above relate to a situation in which a decision has to be made
with observations taken singly, that is, by item-by-item inspection. An interesting
question is therefore whether the sequential test works when items are inspected in
groups, for example when items are inspected at a particular fixed time interval. Some
researchers[91, 97] argue that the threshold for grouped data should be adjusted to
take account of the grouping. But Wald [45] showed that taking observationsin
groups and applying the SPRT should lead to the same conclusions as item-by-item
inspection. Wald’ s theoretical argument on using the SPRT with grouped data
concluded that, for al practical purposes, grouping does not decrease the protection
against wrong decisions provided by the test. Hence we shall use grouped data with

A and B calculated asiif the test was based on item-by-item inspection and be re-
assured by Wald’ s findings, as used by Spiegelhalter et al [70], that we ought to make
the same decisions as we would if we had singly collected data. Our strategy in any

case will be to test performance by simulation.
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6.6 Application of the SPRT to the self-controlled case series method.

6.6.1 Surveillance scenario

In this section, we introduce a hypothetical surveillance system which is set up to
monitor the performance of a new vaccine, for example the introduction of a new
rotavirus vaccine (see chapter 8). We shall describe how the self-controlled case series
method can be used with the SPRT. For definiteness, we shall take the adverse event

of interest to be intussuscetption in children aged under 2 years [68, 69, 98].

Cases of intussusception in children aged less than two years are reported to a central
database. At regular time intervals (say every 6 months, or every 12 months) the
vaccination records of the cases notified in the previous 6 or 12 monthly period are
ascertained using a mechanism that is independent of the occurrence of the event.
Such data might be obtained from databases such as hospital records, the GPRD or

VSD [99].

The self-controlled case series method is then applied at the end of each successive 6
or 12-month calendar timeinterval. We call thisinterva the monitoring interval. The
observation period for each case with an event during that time period includes all
time spent in the defined age groups (in our example, 0-2 years) within the monitoring
interval. If the adverse event is a contra-indication for subsequent vaccination, the
observation period is further constrained to begin with vaccination. The risk period (in

our example, this might be 2 weeks post-vaccination) will have been defined prior to
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the start of surveillance. In what follows we assume for ssmplicity that thereisa

single risk period and that each child receives a single vaccine dose.

In the self-controlled case series method, fixed covariates are controlled for aswas

shown in chapter two. For simplicity we shall assume that thereis no age effect.

We have two hypotheses: anull hypothesis H,, corresponding to no association, hence
therelativeincidenceRI, =1, and H, corresponding to arelative incidence
(say, RI, = 2) that is deemed important to detect. Note that, Rl ,, «, # and RI, have to

be defined in advance. The log-likelihood ratio is then calculated at the end of each

fixed timeinterval.

From chapter two, the log-likelihood with no age effect is

{(p)= X X nlog —ze;xei(;f};i;

where i denotes individuals, and the risk period indexed by k with

K 0 if unexposed and 5, =0
~ |1if exposed '

The symbols g, ,n, respectively denote length of time at risk and number of events

experienced by an individual i in risk period k.

UnderH,, £, =0. Let £, denotethevalue of SunderH,. Thus

B,=0and B =10g(RI,) . Now let e, , n, denote, respectively, thetime at risk and
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number of events experienced by case i inrisk period k during the tth monitoring

interval. Also let L, L, denote the likelihoods under H,and H, , respectively, for time

interval t.
It follows that:
ex
log(LOt):Zniktlog 1th ) Iog(th):antIOg M
" 2 6n & Y- exp(B.)e
r=0 s=0
and so
1
L ZQrt
A, = Iog(L—“j = Zr\kt log| exp(B,) +—="——
o K zexp(ﬂs)QSt
s=0
1
=2 | B —log| Y exp(B) ™
ik s=0 qut
r=0
Hence
A =ny log(R,) -1, log(@ + Ry ) (6.8)
where @, = thq isthe proportion of time spent by case i in exposure category k
ot 1t

during the tth monitoring interval.

In the simulations that follow we shall assume @, =1-r and @, =r . Then (6.8)

above reduces to:
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A =nyB,—n log(1l-r+e’r) (6.9)

where n,, isthe number of events during the monitoring interval (t) that occurred in
therisk period, n, isthe baseline incidence of the number of cases arising in the

monitoring interval (t) and r isthe ratio of the risk period to the observation period.

The SPRT chart involves plotting the pair (t,Z,)

Z,=Z_,+A, t=123... (6.10)

at the tth monitoring interval, where Z, =0 and

A, = Iog(%j =n, /8, —n log(1-r+e’r) isthe sample weight assigned to

Ot

monitoring interval t.

Inthe SPRT chart, sampling should continue if the quantity Z, lies between two
thresholds log(A) and log(B) . When Z, exceedslog( A), stop and reject H,in favour

of H,and viceversawhen Z, islessthan log(B) . Thus the boundaries take the form

of horizontal lines.
6.6.2 Specificationsin the SPRT chart

One of the most important specifications before carrying out such a surveillance
exercise concernsvaues of ¢ and . Thesizesof « and A should reflect the costs of

making the two types of error. For example, if we wish to avoid falsely identifying an
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adequate vaccine as being positively associated with an adverse outcome then

o should be made very small, whereas if we consider it a serious mistake to missa
poor vaccine which is positively associated with an adverse outcome, then £ should
be made small. Both errors are serious, so we adopt a convention of using

equa a and . Spiegelhalter [70] advocates that instead of choosing a single value
for o and f, a set of horizontal lines can be drawn on the chart to indicate different
degrees of urgency: for example, amonitoring study might use ¢ = £ =0.1 asan
‘aert’ threshold and a more stringent o = £ =0.01 for ‘alarm’. Table 6.1 below gives
some possible thresholds for various values of o and £ .

Table 6.1 Thresholds for the SPRT for different values of «and 3

o B Lower threshold Upper threshold
log(B) log(A)
005 0.05 -2.94 2.9
0.01 0.01 -4.60 4.60
0.01 0.02 -3.90 4.58
0.02 0.01 -4.58 3.90
0.005 0.005 -5.29 5.29
0.001 0.001 -5.91 591

It isalso possible to set up several SPRT surveillancesin different countries or
ingtitutions (hospitals or GP practices). If that were to be the case, more stringent
boundaries may be appropriate because of the many comparisons being made. For
exampleif we had 10 centres on surveillance, of 10 centres performing normally, we
would expect one to cross the ‘alert’ boundary by chance alone. Some authors [70]

propose a Bonferroni-like adjustment, for example when monitoring n institutions,
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usingvaluesof a=/=0.1/nand o= =0.01/n for ‘aert’ and ‘alarm’

respectively.

The original idea of the SPRT as conceived by Wald [45] was designed to carry out a

test of hypothesis H,, versus the alternative H, and then decide either to terminate

because the threshold has been crossed or continue observing because the threshold
has not been crossed. For long term surveillance we could modify the idea so asto
restart the procedure when, say, we cross the lower boundary and so are confident
there is no increase in the relative incidence of an adverse outcome. Modifying an
SPRT in thisway has the advantage that it is not possible to build up excessive
‘credit’ and so gains sensitivity changes in performance [ 70], but also has the
disadvantage that the strict interpretation of « and S islost. Such alossis not too
serious if the surveillance system as described here is only an aid to monitoring which
should eventually trigger remedial action such as investigating by conducting a proper
retrospective study to confirm or reject the ‘signal’ detected. Another variant isto
introduce athird, vertical, boundary which effectively places atime limit on the
surveillance. The rationale for using athird vertical boundary relate to the context in
which we envisage to use the SPRT, namely focussed surveillance of a new vaccine.
In such a situation it is not appropriate to wait indefinitely for evidence of safety or
lack of it. Thusit is appropriate to build in a maximum surveillance time, and design
the system so as to have a high probability of not hitting this vertical boundary. In the
simulation study whose results and procedure is reported in section 6.8, we used this

approach.
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6.7 Adjusting for agein the SPRT

Both adverse events and vaccination are often highly age-dependent. Henceit is
important to adjust for age. One way to control for age in the SCCS method could be
to use profile likelihood where we profile out the age parameters as nuisance

parameters [100].

Thus Z, becomes Z, = Iog[ (th = th—l"'Lll) ]

(Lo X Lo gorlr)

where L' = profilelikelihood for S (the logarithm of the relative incidence) having

profiled out the age parameter.

There are three possible ways in which the age parameter could be profiled out within

the surveillance system described earlier, and these are as follows:

1) First obtain the age parameter & () values for the first monitoring interval,

or for abaseline period, and keep these fixed thereafter or,

2) Re-estimatetheage parameter (/) separately within each monitoring

interval or,

3) Re-estimate the age parameter ¢( ) at each monitoring time interval using

all previous data.
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We have left the investigation of these ideas about controlling for age for future
research. In the next section we present results from simulations showing how the

SPRT would work in asimplified scenario without controlling for age.

6.8 Simulation study: evaluating the performance of the case series SPRT

6.8.1 Description of the surveillance scenario

L et us assume that we have set up a surveillance system as described in section 6.6.1
to monitor anew vaccine every six months. In the surveillance system, the numbers of
cases of aparticular adverse outcome are collected at a central reporting centre. Note
here that the monitoring interval can be of any length depending on prior knowledge

of aparticular vaccine being monitored.

We decided on a surveillance period of 10 years. This 10-year period determines the
third vertical boundary discussed above. It isused primarily for design purposes, as
we require that there should be good power to detect a problem within this period. In
practice the surveillance could continue beyond this boundary. The choice of 10 years
isarbitrary and could be varied according to requirements. In what follows, ‘ power’
refers more precisely to operational power, namely the probability of detecting a
genuine problem before the vertical boundary is reached. We carried out simulations
for various lengths of surveillance periods, but here we only present results from aten

year surveillance period.
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Recall that the SPRT chart involves plotting the pair (t,Z,)

Z,=Z_,+A, t=123... (6.10)

where Z, =0, and t counts the monitoring interval. For the results presented here, we

used a six months monitoring interval (for simplicity, all ‘months’ contain 4 weeks

and all ‘years’ 48 weeks).

A, =log = =n,B —n, log(1l-r +€’r) isthe sample weight assigned to
t LO At/ .t

t

monitoring interval t, wheren,, isthe number of events during the monitoring
interval that occurred in therisk period, n, isthe number of events arising in the

monitoring interval and r isthe ratio of the risk period to the observation period. The
risk period was varied: we used 1, 2 and 4 weeks. A range of relative incidences to be
detected were investigated but here we only present results from relative incidence of

15,2, 3,35,4,and5.

It isimportant to distinguish between two uses of the relative incidencein the
simulation. We shall denote RI = e* the design value, that is, the value used in the

SPRT. In addition, we shall denote RI, =&’ the actual value used to generate the

data. Thevauesof RI, included 1, 1.5, 2, 3, 3.5, 4, and 5.

We used arandom number generator using SAS program version 8.2 [101] to
generate the total number of casesin each monitoring interval arising from a Poisson

distribution:

n, O Poisson(4)
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where the underlying rate 4 wasfixed at one of the following values:

1=5,10,20,50.

The numbers of cases arising in the risk period were generated using the binomial

distribution with the expression:

n, U Binomal(n,,7x)

2

r
where 7=————
e r +1-r

is the probability of acase being in the risk period.

We simulated aten year surveillance period with six month monitoring time interval.
So, if the process did not give any signal, we expect atotal of 20 inspections in which
the value of the SPRT is calculated every six months. For each combination of
parameters we repeated the procedure 2000 times. We call a set of 2000 simulations a
run. In each run, we observed the ability of the surveillance system to detect a
particular relative incidence by finding the proportions of occasions on which the
upper, lower and vertical thresholds were crossed. To check the speed of response of
the surveillance system, we cal cul ated the average time at which a particular boundary

was crossed for those simulations in which the boundary was crossed.

Figure 6.1 below gives an example of the output. The cumulative value of SPRT is
plotted at each monitoring interval. We see three realisations of the process, one in
which the observed number of cases arising in each six month monitoring interval

leads to the acceptance of alternative hypothesis, that the relativeincidenceis5; this
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happens in the second year. In such a situation, monitoring would have to be stopped

and further investigations carried out.

SPRT chart monitoring a possible new vaccine
with distribution of cases

e Alternative Hypothesis
® o
2 o o O a4 0 Rig o
#7(42] ¢T63k e #3222 R 06,2
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ri=5, alpha=beta=0.01, r=1 month, poisson mean =5 [x, y]=x(total cases) y(cases in risk period)

Figure 6.1. Example of three realizations with relative incidence 5, ratio of the risk
period to the observation period r :%,/1 =5a=/4=0.01

The lower path is an example of realisation in which the process leads to the
acceptance of the null hypothesis which also happensin the second year. The middle
path is a realisation which does not lead to any signal all the way up to the end of the
surveillance period (ten years). The numbersin the square brackets in Figure 6.1
represent the total number of events arising in the six month time interval and the
number of eventsin therisk period. The nominal Type | and Type |l errors were both

set at 0.01.
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6.8.2 Simulations based on the design values

Tables 6.2, 6.3, 6.4 below show results from the simulation with one week risk period,
two weeks risk period, and one month risk period, for a range of relative incidences
and different values of the baseline incidence A , the mean number of cases per
monitoring interval. We note some patterns in the results. The patterns noted can be
described with respect to the risk periods whether short (Table 6.2 r=1/24), middling
(Table 6.3, r=1/12) or long (Table 6.4 r=1/6 ). They can also be described in terms of
the relative incidence to be detected whether it islow (RI=1.5, 2), middling (RI=3,
3.5), or large (RI=4, 5). The baseline incidence A for the number of casesarisingin
each monitoring interval is also likely to have an effect as one would expect, for
example a pattern emerges with respect to few cases (arising from Poisson mean of 5,
and 10) and another emerges with respect to more cases (arising from Poisson mean
of 20 and 50). There is a pattern with respect to the proportions out of 2000 ten year
surveillance periods that crossed either boundaries or those that did not cross any

boundary. Below, we describe the patterns observed.

6.8.3 Power and Typell error probabilitiesfor design values.

The simulations were done with 3, = £, so that in each case the true relative

incidence was the relative incidence we wanted to detect (the design value).
Throughout we set nominal Typel and Type |l error probabilities at 0.01. The results

are summarised in Figures 6.2, 6.3, and 6.4.
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We measured the power by calculating the proportions of the 2000 ten year traces that
gave asignal by crossing the upper boundary (in favour of the aternative hypothesis).
We also calculated the proportions crossing the lower boundary (in favour of the null
hypothesis). The proportions of traces crossing the upper and lower boundary are

analogous to sensitivity and Type Il error of the surveillance system.

Figure 6.2 shows that the power increased with the relative incidence, the baseline
incidence of the number of cases arising in each six month monitoring interval and the
risk period. For events arising with Poisson mean of 10 or more, the power is greater
than 80% for relative incidences of 3 or more. For events arising with Poisson mean

of 50 or more, the power isin excess of 95% for relative incidence of 2 or more.
Figure 6.3 shows that the Type |l error, that is, crossing the lower boundary in this
case in favour of the null hypothesis given that the data arises from the distribution
whose true relative incidence is the one we are trying to detect, isvery low in all
situations. In all casesthe actua Type |l error probability is much less than the design

value of 0.01.
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Power

2weeks 4weeks

Percent
0 10 20 30 40 50 60 70 80 90 100

T T T T
15 2 3 35 4 5 15 2 3 35 4 5 15 2 3 35 4 5
Relative incidence

——e—- Poisson(5) ——e—— Poisson(10)
------- o Poisson(20) -—-e—— Poisson(50)

Graphs by Risk period

Figure 6.2. Power (percent) by relative incidence, risk period (1 week, 2 weeks, 4
weeks) and baseline incidence (Poisson mean of 5, 10, 20, 50).

Type Il error probability
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Figure 6.3. Typell error (percent) by relative incidence, risk period (1 week, 2
weeks, 4 weeks) and baseline incidence (Poisson mean of 5, 10, 20, 50).
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Figure 6.4 shows a decreasing relationship between the proportions that did not cross
either the upper or the lower boundary during the ten year surveillance period with
relative incidence, risk period and baseline incidence. The proportions of the 2000
simulated values that did not cross the upper or lower boundary during the ten year
surveillance period was very high (~100%) when trying to detect asmall relative
incidence, with small baseline incidence. For events with baseline incidence of 10 or
more, relative risk of 3 or more and risk period of 2 weeks or more, the proportion not

crossing the lower or upper boundary within 10 yearsis virtualy zero.

Proportions crossing the 10-year boundary
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Percent
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Figure 6.4. Proportions (percent) by relative incidence, risk period (1 week, 2 weeks,
4 weeks) and baseline incidence (Poisson mean of 5, 10, 20, 50).

So far we can see that the surveillance system is quite sensitive for detecting arelative
incidence equal to the design value. Later, we investigate the performance of the

surveillance system where data arises from a population whose true rel ative incidence

is different from the design value.
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Table 6.2. Results from 2000 simulations of 10 year surveillance period with six months monitoring interval and one week risk

Period.

RI | Poisson Proportions of 2000 Average RI | Poisson Proportions of 2000 Average
Meanno. | samples year crossed Mean no. | samples year crossed
cases Pa Pb Pc Ya Yb cases Pa Pb Pc Ya Yb

15 5 0.0000 0.0000 1.0000 - - 35 5 0.7230 0.0030 0.274 540 5.00

10 0.0065 0.0000 0.9245 | 8.18 - 10 0.9430 0.0050 0.0520 |3.76 3.40
20 0.0870 0.0000 0.9130 | 7.87 - 20 0.9960 0.0030 0.0010 |230 311
50 0.5130 0.0015 04855 | 531 4.03 50 0.9965 0.0035 0.0000 |1.09 0.91
2.0 5 0.0755 0.0000 0.9245 | 7.42 - 4.0 5 0.8500 0.0055 0.1445 |3.79 " 7.55
10 0.3145 0.0015 0.6840 | 5.67 9.18 10 0.9765 0.0060 0.0175 |320 3.70
20 0.6950 0.0065 0.2985 | 5.63 7.70 20 0.9930 0.0070 0.0000 186 2.60
50 0.9595 0.0060 0.0245 | 359 4.17 50 0.9970 0.0030 0.0000 0.90 0.66
3.0 5 0.5555 0.0030 0.4415 | 579 8.28 5.0 5 0.9565 0.0050 0.0385 | 3.79 5.64
10 0.8655 0.0095 0.1245 | 4.65 5.78 10 0.9945 0.0045 0.0010 |2.34 281
20 0.9885 0.0070 0.0045 | 292 3.20 20 0.9965 0.0035 0.0000 | 1.30 1.36
50 0.9970 0.0030 0.0000 196 265 50 0.9975 0.0025 0.0000 | 0.70 0.89

Pa, Ph, Pc=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary, Y a, Y b=the average year when the upper, lower boundary was
crossed conditional on having crossed the boundary. RI=relative incidence. & = § = 0.01 Type | and Type Il error probabilities.
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Table 6.3. Results from 2000 simulations of 10 year surveillance period with six months monitoring interval and two weeks risk

period
RI | Poisson Proportions of 2000 Average RI Poisson Proportions of 2000 Average
Meanno. | samples year crossed Mean no. | samples year crossed
cases Pa Pb Pc Ya Yb cases Pa Pb Pc Ya Yb
15 5 0.0050 0.0000 0.9950 | 7.60 - 3.5 5 0.9305 0.0050 0.0654 |4.25 4.37
10 0.0755 0.0000 0.9245 | 7.81 - 10 0.9915 0.0060 0.0025 |259 3.14
20 0.3330 0.0015 0.6655 | 7.00 8.76 20 0.9975 0.0025 0.0000 | 149 196
50 0.8510 0.0040 0.1445 |5.12 5.02 50 0.9970 0.0030 0.0000 | 0.76 1.02
2.0 5 0.2705 0.0010 0.7285 | 591 9.29 4.0 5 0.9665 0.0085 0.0250 | 354 ° 4.75
10 0.6635 0.0030 0.3335 | 578 595 10 0.9960 0.0040 0.0000 | 208 2.96
20 0.9260 0.0065 0.0675 | 4.32 4.98 20 0.9975 0.0025 0.0000 | 123 151
50 0.9955 0.0035 0.0010 | 220 2.26 50 0.9980 0.0020 0.0000 | 0.65 0.50
3.0 5 0.8420 0.0030 0.1550 | 4.98 4.85 5.0 5 0.9865 0.0070 0.0065 | 2.79 3.86
10 0.9825 0.0025 0.0150 | 3.36 2.23 10 0.9945 0.0055 0.0000 | 1.58 131
20 0.9970 0.0025 0.0005 190 253 20 0.9975 0.0025 0.0000 | 1.23 151
50 0.9975 0.0025 0.0000 | 096 0.77 50 0.9975 0.0025 0.0000 | 0.58 0.60

Pa, Pb, Pc=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary, Y a, Y b=the average year when the upper, lower
boundary was crossed conditional on having crossed the boundary. RI=relative incidence. & = # = 0.01 Type | and Type Il error probabilities.
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Table 6.4. Results from 2000 simulations of 10 year surveillance period with six months monitoring interval and one month risk

Period.

RI | Poisson Proportion of 2000 Average RI Poisson Proportions of 2000 Average
Meanno. | samples year crossed Meanno. | samples year crossed
cases Pa Pb Pc Ya Yb cases Pa Pb Pc Ya Yb

15 5 0.0400 0.0000 0.9600 | 7.80 - 35 5 0.9955 0.0050 0.0095 | 328 262

10 0.2500 0.0020 0.7440 | 5.87 7.06 10 0.9960 0.0040 0.0000 | 1.84 219
20 0.6600 0.0050 0.3350 | 597 5.88 20 0.9960 0.0040 0.0000 | 1.08 1.02
50 0.9555 0.0050 0.0395 | 3.81 5.26 50 0.9990 0.0010 0.0000 | 0.62 0.53
2.0 5 0.5364 0.0030 0.4610 | 524  8.90 4.0 5 0.9895 0.0055 0.0050 | 2.76 = 2.52
10 0.8745 0.0045 0.1210 | 473 5.33 10 0.9960 0.0040 0.0000 | 155 218
20 0.9860 0.0055 0.0085 | 3.08 2.99 20 0.9965 0.0035 0.0000 | 094 0.64
50 0.9960 0.0040 0.0000 | 1.49 1.01 50 0.9995 0.0005 0.0000 | 057 0.50
3.0 5 0.9595 0.0045 0.0360 | 3.98 3.46 5.0 5 0.9940 0.0055 0.0005 |210 1.91
10 0.9940 0.0050 0.0010 | 2.36 1.78 10 0.9960 0.0040 0.0000 | 1.20 0.99
20 0.9975 0.0025 0.0000 | 1.37 191 20 0.9975 0.0025 0.0000 | 0.74 0.73
50 0.9985 0.0015 0.0000 | 0.71 0.50 50 0.9995 0.0005 0.0000 | 052 0.50

Pa, Ph, Pc=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary, Y a, Y b=the average year when the upper, lower
boundary was crossed conditional on having crossed the boundary. Rl=relative incidence. & = f# = 0.01 Type | and Type Il error probabilities
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Figure 6.5. Effects of risk period, relative incidence and baseline incidence of the number of cases on
the surveillance system from 2000 simulation of 10 year surveillance period with 6 months monitoring
time interval when either boundaries were crossed.

6.8.4 Timeto crossing a boundary

Figure 6.5 (left panel) shows the average time (years) to crossing the upper boundary,
conditional on crossing it. Figure 6.5 (right panel) shows the corresponding results for
lower boundary. Note that these graphs should be interpreted in conjunction with

Figure 6.4.

In brief, figure 6.5 shows that, conditional on crossing, crossing either boundary

occurs earlier for the following situations:

(8) Astherisk period increases.
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(b) Astherelative incidence to be detected increases.

(c) Asthe baseline incidence increases (Poisson mean of 5, 20, 20, 50).

Most interest relates to Figure 6.5 (left part). For events with baseline incidence of 10
or more, and arelative incidence of 3 or more, detection occurs within 5 yearson
average in those detected. For events with an incidence of 50 or more, detection
occurs within 2 years. This means that if there is a problem, then it is detected

quickly.

6.8.5 Simulationsfor relative incidences other than the design value.

In the last three subsections, we have seen how the surveillance system performs
when we simulated data using arelative incidence equal to the design value. We now
present simulation results when the true relative incidence RI, associated with the
event of interest differs from the design value of the SPRT (that is, the relative

incidence RI the system is designed to detect).

We investigated similar situations as in those given in section 6.8.3 but here we

present results for the 2 weeks risk period only. The design relative incidenceRI is

15, 2, or 3and the true relative incidenceRl, is1, 1.2, 1.5, 2, or 3.
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Table 6.5. Results from 2000 simulations of 10 year surveillance period with six

months monitoring interval and two weeks risk period.

RI | Poisson Proportions of 2000 Average RI | Poisson | Proportions of 2000 Average
RI2 | Meanno. | samples year crossed RI2 | Mean samples. year crossed
cases Pa Pb Pc Ya Yb Nno. cases Pa Pb Pc Ya Yb
15 15
1.0 1.2
5 0.0005 0.0000 0.9995 | 9.50 - 5 0.0005 0.0000 0.9995 | 8.00 -
10 0.0000 0.0210 0.9790 - 9.09 10 0.0050 0.0055 0.9895 | 7.44 9.39
20 0.0035 0.2635 0.7330 | 572 7.80 20 0.0350 0.0445 0.9205 |6.91 8.04
50 0.0035 0.8265 0.1700 | 5.01 5.65 50 0.1345 0.2435 0.6220 | 599 6.62
15 15
2.0 3.0
5 0.0640 0.0000 0.9370 | 8.03 - 5 0.5080 0.0000 0.4920 | 7.45 -
10 0.4840 0.0000 0.5160 | 7.25 - 10 0.9730 0.0000 0.0270 | 532 -
20 0.9250 0.0000 0.0750 | 543 - 20 1.0000 0.0000 0.0000 |2.89 -
50 1.0000 0.0000 0.0000 | 257 - 50 1.0000 0.0000 0.0000 |1.32 -
20 2.0
1.0 1.2
5 0.0010 0.1140 0.8850 | 6.75  8.46 5 0.0075 0.0535 0.9390 | 7.38 8.63
10 0.0025 0.5670 0.4305 | 744 6.85 10 0.0230 0.2915 0.6855 |6.33 7.24
20 0.0035 0.9140 0.0825 | 397 4.96 20 0.0515 0.6295 0.3190 | 540 5.78
50 0.0030 0.9950 0.0020 | 240 252 50 0.0550 0.9020 0.0430 | 310 374
2.0 2.0
15 3.0
5 0.0440 0.0100 0.9460 | 6.93 8.65 5 0.8015 0.0000 0.1990 | 6.05 -
10 0.1570 0.0890 0.7540 | 6.27 7.27 10 0.9905 0.0000 0.0095 | 3.92 -
20 0.3180 0.1815 0.5005 | 552 5.98 20 1.0000 0.0000 0.0000 | 2.10 -
50 0.5710 0.2720 0.1570 | 435 4.69 50 1.0000 0.0000 0.0000 | 1.02 -
3.0 3.0
1.0 1.2
5 0.0040 0.7865 0.2095 | 355 597 5 0.0210 0.6045 0.3745 | 519 6.46
10 0.0035 0.9775 0.0190 | 3.67 4.02 10 0.0190 0.8895 0.0915 | 344 470
20 0.0045 0.9955 0.0000 | 1.84 226 20 0.0150 0.9775 0.0075 |337 294
50 0.0020 0.9980 0.0000 | 050 1.05 50 0.0115 0.9885 0.0000 |1.31 144
3.0 3.0
15 2.0
5 0.0705 0.3230 0.6065 550 6.76 5 0.3215 0.0955 0.5830 565 6.54
10 0.1090 0.6320 0.2590 479 539 10 0.5075 0.1785 0.3140 388 517
20 0.1270 0.8110 0.0620 333 4.05 20 0.6670 0.2365 0.0965 389 411
50 0.1070 0.8915 0.0015 435 4.69 50 0.7770 0.2160 0.0070 228 245

Pa, Pb, PC=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary,
Y a, Y b= the average year when the upper, lower boundary was crossed conditional on having crossed
the boundary. Rl=relative incidence to be detected (design value), RI2=true relative incidence in the

population. & = #=0.01 Type| and Typell errors.
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6.8.6 Truerelativeincidence=1 (RI, =1)

Wefirst investigated the performance of the surveillance system when the true
relative incidenceis 1. The quantity of interest isthe Type | error, namely the
probability of crossing the upper boundary (within 10 years) when the true relative

incidenceis 1. We see from the rows of Table 6.5 (rows RI, =1, column Pa) that the

empirical Type| error is smaller than that used to set the boundaries (0.01). This
means that in most situations when the true relative incidence is 1, the surveillance
system will not give afalse alarm. Asthe design relative incidence increases and as
the base line incidence increases, the system becomes more sensitive by signalling
very quickly in favour of the null hypothesis (high proportions crossing the lower
boundary ‘Pb’, see table 6.5). Figure 6.6 below shows the probability of correctly
concluding that the relative incidence is 1, as indicated by the percentages of traces
crossing the lower boundary. The probability of correctly concluding that the relative
incidence is 1 was greater than 90% for design values RI in excess of 2, and baseline

incidence of 20 or more.
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Figure 6.6. Probability of crossing lower boundary.

6.8.7 Truerelativeincidence greater than 1, but not equal to the design value

Tables 6.5 also shows the results from the simulation with design value (RI ) of the
relative incidences of 1.5, 2, and 3 arising from simulations with true relative
incidence (RI,) 1.2, 1.5, 2, and 3. As one would expect, when the true relative
incidence is larger than the design value (for example RI=1.5 and

RI, =2 or 3, Rl =2 and RI, = 3) the system very quickly signalled in favour of the
alternative hypothesis. Thisisindicated by the decreasing average year when the
upper boundary was crossed and by the high probabilities of crossing the upper
boundary. In contrast, for the following pairs (RI, RI,): (1.5, 1.2), (2, 1.2), (3, 1.2),

(3, 1.5), the system signalled more frequently in favour of the null hypothesis than for

the alternative. For the pairs (2, 1.5), (3, 2) the reverse was the case.
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6.8.8 Average year to signal for simulationswith different design values

In terms of how quickly the process was able to signal by way of either crossing the
upper threshold or lower threshold, Table 6.5 show that the smaller the design value
RI, the longer the process took to signal. The detection times (conditiona on

detection occurring) decrease as the true relative incidence RI, and the baseline

incidence increase.

6.9 Conclusion

In this chapter, we have illustrated how the SPRT can be adapted for use with the self-
controlled case series method. We have evaluated the performance of the SPRT by a

simulation study of a possible surveillance system.

Overal we see from the simulation study that the performance of the surveillance
system using the SPRT works broadly as intended. Ideally, we would like a system to
be very quick to detect atrue relative incidence greater than 1 and also if thereis no
problem we would like the process not to cross the upper boundary or ideally signal in
favour of the null hypothesis. The simulation study showed that the system was able

to achieve dll these.

Using the SPRT with the self controlled cases series method has all the advantages of
using the self-controlled case series method (see chapter 1). A further advantage
compared to other methods [ 79-82] is the specification of Type | and Type Il error
probabilities which control against making wrong decisions. These error levels apply

to the entire SPRT process, not to each specific monitoring time interval, and for this
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reason the analysis takes account of multiple testing. The adjustment for multiple
testing is not explicit as in the Bonferroni adjustment, but is incorporated into the
SPRT in the way that the upper and lower boundaries are calculated. These

boundaries preserve o and £ until afinal decision isreached as to whether the

hypothesis should be accepted or rejected [92]. However, we note that the actual Type

| and Type Il error probabilities are lower than the nominal valueser = = 0.01.

Typically the actual values are |ess than half the nominal values. Thus the boundaries
could be made less stringent without adversely affecting the actual error probabilities;

nominal values o = £ =0.025 might be appropriate to obtain actual values close to

0.01.

A possible limitation with the surveillance method isitsinability to signal in real time
since it is based on retrospective data. One possible solution to this would be to make
the monitoring time interval shorter, though we have not investigated the implications
of this other than through varying the baseline incidence A . Finally, it should be
stressed that such a surveillance system would rely on routinely collected data for
signal detection. Such data have varying degrees of accuracy in diagnostic coding; it
isfor this reason that such a surveillance system should not be viewed as the final
confirmatory epidemiologic investigation into potential vaccine adverse events. Such
asurveillance system is also limited to conditions that develop relatively soon after
vaccination, and would not be suitable for investigation of conditions with alonger
induction period, for example an adverse outcome that manifests itself several years

after exposure.
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This chapter provides a‘ proof of principle': the case series method can be used for
focused surveillance using the SPRT. Further work is required to incorporate age

effects, select optimal values of « = fand the best monitoring interval.
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Chapter 7

L ong-term surveillance using CUSUM chartswith the self-controlled

case series method

7.1 Introduction

In chapter six we explored various methods used in surveillance systems. We
identified two possible methods that can be adapted for use with the self-controlled
case series method. These were the sequentia probability ratio test (SPRT) and the
cumulative sum (CUSUM). We showed how the SPRT can be used with the case
series method. We now show how the CUSUM can be used with this method. In
chapter 6 the emphasis was on focused surveillance of a single vaccine and adverse
event, as would be undertaken after licensure of a new vaccine. The situation we
consider hereis the second scenario described in section 6.2 of chapter 6, namely
long-term surveillance of several vaccines or several adverse events. The presumption

is that thereis no problem, so that RI, =1(where RI, is as defined in section 6.8.1 of

chapter 6). The main differences with the earlier scenario are that thereis no time
limit (previously we had a vertical boundary at 10 years) and that we need to control
the overal Type error for several vaccines. We begin by a brief background of the
genesis of the CUSUM chartsin section 7.2, followed by some theory behind the
CUSUM presented in section 7.3; a note on the control limit of the CUSUM is given
in section 7.4. Section 7.5 describes the two sided tabular CUSUM. The application of

the CUSUM to surveillance using the case series method is given in section 7.6, and
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in section 7.7 we present results from a simulation study. We conclude the chapter by

describing the overall findings in section 7.8.

7.2 Background on CUSUM

The CUSUM procedure is one of the most well-known monitoring methods for
sequential data. There are two types of CUSUMS, the tabular (algorithmic, decision
interval) CUSUM and the V-mask form. The tabular CUSUM was first introduced by
Page [46]. It was developed from the Wald sequential test [45]. It was designed to
detect changes in a process parameter of interest, for examplein our case therelative
incidenceRI (where Rl is as defined in section 6.8.1 of chapter 6). Later, Barnard
[102] developed the V-mask form of the CUSUM. The idea behind the V-mask
CUSUM was to enable combined detection of both an increase or a decrease of the
parameter of interest. We restrict attention to the tabular CUSUMs which can easily

be adapted for use with the self-controlled case series method.

Theinitial development of CUSUM by Page [46] was for use in industria problems
where monitoring of a production processis of interest. In these settings, the CUSUM
charts have been shown to be ideally suited to detecting small persistent process
changeg[103]. Recently [86, 88, 92, 97, 104, 105], CUSUMs have been used in a
medical context to monitor outbreaks of infectious disease or congenital
malformations. Application of the CUSUM to monitoring surgical performance was
first proposed by Williams et a [106]. Thefirst application of a CUSUM chart to
monitoring surgical performance is documented in De Leval et al [107] and Steiner et

al [108] who considered the problem of monitoring outcomes in paediatrics cardiac
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surgery. Rossi et a [109] used CUSUM charts to monitor respiratory and mortality in
males in North Tuscany. Marshall et al [110] propose a CUSUM dealing with
simultaneous surveillance of health outcomes over multiple units as well astime

points.

7.3 The CUSUM

The CUSUM procedure involves plotting
Z,=max(0,Z_,+A,), t=123,.. (7.1)
at the tth observation, where, as for the SPRT, Z, =0and A, isthe sample weight

assigned to the tth subgroup as defined in an SPRT. For use with the self-controlled
case series method, subgroups are a collection of cases taken from the surveillance
system at fixed monitoring intervals. The CUSUM procedure differs from the SPRT
because it has a holding barrier at zero rather than alower absorbing barrier. The
CUSUM sequentially teststhe hypothesis H, : 6 = ,versusH, : 6 =6, . The processis
assumed to bein state H,aslong asZ, < h, and is deemed to have shifted to state H,

if Z, >hat sometimet. The constant h is called the control limit of the CUSUM. A

CUSUM that exceeds the control limit is said to have ‘signalled’. A signal means that
the chart has accumulated enough evidence to conclude that the process (surveillance)
parameter has changed. At this point, it is expected that monitoring will stop and
remedial action will be taken. Notice that although individual scores (A,) may be

negative, the tabular CUSUM based on Z, is restricted to values greater or equal to

zero. Thisis mainly because the expression (7.1) is designed to detect an increasein
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parameter 6, . Later we will show how (7.1) can be rewritten to monitor decreasein

parameter 6, .

The hypothesisH,, in the CUSUM can never be accepted, whileH, will eventually be
accepted with probability 1, thuser =1 and = 0. Theoretically the CUSUM will

always eventually signal, although the signal may be afalse alarm. The run length of
the CUSUM s defined as the time (or number of observations) required before the
CUSUM first exceeds the control limit (i.e. signals). Good choices for the control
limith are based on the expected or average run length (ARL) of the CUSUM

under H, and H, . Theideal situation isto have along ARL when the processisin

stateH , but a short ARL when the process has shifted to stateH, .

Whereas the performance of an SPRT is determined by its nominal error

rateser and S, the efficiency of a CUSUM chart is quantified in terms of length of
time before an alarm, false or true, israised. The CUSUM’s performance is assessed
by the average run length to detection of an alarm. A useful review of some
alternative measures that can be used to summarise the performance of Statistical
Process Control (SPC) charts of which the CUSUM isoneis provided by Frisén
[111]. The most commonly used measure as reviewed by Frisén is the average run

length. When the processisin stateH ,, the average run length to detection is called
thein-control ARL , and thisis analogousto the Typel error of an SPRT, whereas the
out-of-control ARL, isthe average run length to detection when the processisin state

H, whichisanalogousto 1 minusthe Typell error (power) of an SPRT.
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Brook et al [112] and also Grigg et a [92] showed that the distribution of in-control
run lengths for a CUSUM scheme is approximately geometric, hence it possesses the
memoryless property and becauseit is also discrete, it will usually remain closeto
zero. On the other hand, the out-of-control run length distribution is not geometric
because the chart in this case will tend to move towards the out-of-control region

rather than remaining at zero.

The CUSUM may be defined for weights A, other than the log-likelihood ratio in

contrast to the SPRT which is only defined with log-likelihood ratio weights. The log-
likelihood ratio weights are the best to usein a CUSUM. Moustakides [113] showed
that the log-likelihood ratio weights are optimal in the sense that, of all CUSUMs with
the same ARL under the null hypothesis, the CUSUM with log-likelihood ratio

weights has the shortest ARL under the alternative.

7.4 Deter mination of thelimit hin a CUSUM

Choosing the control limit h should be based on the expected or average run length of

the CUSUM under H,andH, . Determining the average run length of a CUSUM is

computationally intensive sinceit is based on all possible outcomes for along series

of observations of a monitoring process.

There are various ways of determining the ARL for a CUSUM. Some people use
simulation, which is straight-forward but can be time consuming. Others have
calculated the ARL using an integral equation approach [114]. In this approach,

solutions are only possible via numerical methods. The method is only applicable to
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charts with outcomes that follow a normal distribution. In fact, in someinstancesin

this approach, the solution may not even be possible.

Steiner et al [74] have proposed an approach based on Markov chain methodology. In
this method, properties of the run lengths distribution are used to determine the set of
probabilities of moving from one point on a chart to another and then manipulating
the resulting transition matrix [74]. Calculating the ARL using Markov chain
methodol ogy requires the state space to be discretised so that it isfinite. Steiner et a
do this by enlarging the weights and control limits by a factor (the multiplier) and
rounding off to the nearest integer. Grigg et a [92] have argued that as the result of
discretisation, the Markov chain methodology of calculating the ARL may induce
some error, but the error settles very quickly as the process continues. In our case, we
shall determine the average run length by simulation. We use this approach because it
will alow us to explore the behaviour of the self-controlled case series CUSUM and it

will enable usto explore ARLSs for severa CUSUMSs.

7.5 Two-sided tabular CUSUM

The CUSUM described in the last few sections concentrated on observing a shift of
one particular parameter of interest, say the relative incidence Rl denoting an
increase from the null value 1. In other circumstances one might also be interested in
knowing whether a particular vaccine has devel oped some protective effect with
respect to the adverse event resulting in a decrease of the relative incidence below 1.
In such situations one could use atwo-sided CUSUM. That is, one with the upper

limit, denoting an increase (which in the case of the relative incidence represents a
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deterioration) of the parameter from the expected, and the other, with the lower limit
denoting a decrease (which represents protection) of the parameter from expected.
Page [46] was the first to suggest atwo sided CUSUM, that is, the combined use of
two one-sided tabular CUSUMSs, one to detect improvement and the other to detect
deterioration. Two sided CUSUMSs are now widely used [74, 92, 115] and calculations

of the ARL are needed for both sides.

The CUSUM designed to detect the decrease in the parameter will accumulate

negative values, hence the updating formula (7.1) can be modified as shown below:

Z,=min(0,Z_,—-A,), t=123,.. (7.2)

where Z, =0asbefore and A, is still as defined in expression (6.9) of chapter 6. To

enable plotting the CUSUM chart for the two sided on the same plot, the [imit to
detect a decrease in the parameter is usually assigned a negative value. We shall not
explore the CUSUM based on a decrease in the parameter of interest since thisis

seldom of interest in a surveillance framework.

7.6 Use of the CUSUM for surveillance of adver se events

Asoutlined above, the CUSUM never resultsin *acceptance’ of the null hypothesis,
and in this senseiswell suited for long-term monitoring of established vaccines, the
presumption being that such vaccines are safe. The aim of such monitoring could be
to identify problems resulting from changes in vaccine production or delivery over

time. Typically, one might expect several adverse events and several vaccinesto be
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monitored, thus increasing the chance of afalse detection. For this reason, thereisa
danger that such a monitoring scheme will produce too many false warnings. Rather
than ascribe precise detection limits, it is probably more sensible to use CUSUMsin a
more informal manner, by plotting the updated val ues for the several conditionsto be
monitored, and inspecting them informally. In addition to a CUSUM signalling, two
features might aso be of interest:

a. Persistent increasing trends above baseline.

b. Persistent ranking in ‘top’ position of one CUSUM.

Either of these might suggest further, more formal, investigation, perhapsin the first
instance using the SPRT, or by setting up a suitable epidemiological study. We shall
concentrate on issues relating to a CUSUM signalling. In the next section, we
investigate the performance of the self-controlled case series adapted CUSUM by

determining the average run lengths in a simulation study.

7.7 Simulation study to evaluate the self-controlled case series CUSUM.

7.7.1 Simulation scenario

We considered two settings: surveillance of asingle vaccine, and surveillance of
severa vaccines. The simulation study was carried out in asimilar way as described
in sections 6.6.1 and 6.8.1 of chapter 6. The main differenceis that the lower and
vertical boundaries were removed. We computed the average run length of the
CUSUM for both in control and out of control processes. The other difference was

that we looked at two approaches when simulating several vaccines. In the first
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approach, when one vaccine signals we stop the whole process, and start again after
resetting the CUSUM value of every vaccine to zero. In the second approach, when a
signa istriggered, the CUSUM value for the signalling vaccine only is reset to zero.
S0 as not to make the simulations too unwieldy, we used five vaccines to represent a
situation corresponding to monitoring several vaccines. This represents arealistic
choice in the light of childhood immunisation programmes. To determine the average
run lengths, we simulated for long enough to be sure that the upper limit is eventually

crossed. In practice we simulated for 100 years.

7.7.2 Averagerun length in control and out of control for one vaccine.

We begin by looking at the average run length for systemsin control and out of
control when monitoring a single vaccine. Finding the average run length in control is
similar to investigating the Type | error in an SPRT (see section 6.8.6 of chapter 6).

The parameters used in the simulation for the CUSUM were as follows.

Similar to the simulation in the SPRT, we used a monitoring interval of six months.
We investigated various risk periods, but here we report only results for two weeks
risk periods. Since in the present context the presumption is that the vaccine is safe,
we are primarily interested in investigating relatively small changes in the relative
incidence of adverse events. Accordingly we used design values for the relative
incidence of 1.5, 2 and 3. We present values of 1, 2, 3, 4, for the control limitsh
because they gave ARLSs that were realistic. The baseline incidences we investigated
were same as in the SPRT, that is, Poisson mean of 5, 10, 20, and 50 per monitoring

interval. So for one vaccine under investigation, we had a combination of 3 design
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values, 4 control limits, 4 baseline incidences giving atotal of 48 different

simulations. The out-of-control data were simulated using design values, ORI, = RI .

In the case of asingle vaccine, we simulated each scenario 2000 times and for each
run of 2000 we found the average run length by calculating the average time at which
the control limit was crossed. We aso looked at the median time when the control
limit was crossed, but only report the average because the distribution of crossing
times was generally quite symmetric and the results based on means and medians

werevery similar.

Table 7.1 and Figure 7.1 below shows the average run lengthsin years of a processin
control and out of control for one vaccine. We can see from Figure 7.1 that the
average run length in both situations decreases with decreasing control limit,
increasing baseline incidence, and increasing design value. The decrease of the

average run length with increasing design values may be explained as follows. The
sample weight (6.9) inthe CUSUM isA, =n, 8 —n, log(1-r +e”r). Inthis

expression, for values of the relative incidence close to 1, for example relative

incidences lessthan 5, and low values of r (here r = % ) the values of n,, 3 dominate

thevaluesof n, log (1— r+e’r ) hence as the relative incidence increases, the values

of the CUSUM increases quickly such that it crosses the control limit sooner with
larger design values (Figures 7.1 ). The average run length is shorter out of control
than in control at each set of parameter values. The out of control ARL isat least 3

times thein control ARL at each control limit (see ratio= ARL,/ARL, in Table 7.1).
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Table 7.1 Average run length for one vaccine in and out of control.

h | 4 | ARL,for one ARL, for one ratio—ARLO
vaccinein control. | vaccine out of control. ARL,
(years) (years)

Design value Design value Design value
1.5 2 3 15 2 3 |15 2 3
1|5 (119|832 554|328 |[166 |108 |3.63|501|513
10| 7.48 | 6.05 | 427 | 205 |120 |[0.83 |3.65|504|5.15
20532455 374|145 |090 |072 |367|506|519
50[4.63 366|313 ]098 |0.72 |060 |4.72|5.08]5.22
2|5 (314219130 (858 |435 |198 |3.66|503|6.57
10| 219|157 | 109 | 593 |239 |[140 |3.69|657|7.79
20| 170|108 | 765|360 |1.62 |098 |472|6.67|7.81
50109 | 753 |525|198 |100 |067 |551|753]|7.84
3|5 [417 313|227 926 |620 |334 |451|505]|6.80
101353284 |19.7 | 721 |463 |251 |490|6.14|7.85
200251 171|101 |510 |264 |128 |493|6.48|7.89
50(186 114|967 |335 |143 |0.75 |555|7.97|129
4 |5 (458 |36.1|289 (999 |710 |424 |458|5.09]6.82
10388 318|221 |788 |510 |[277 |492|6.24|7.98
201295218157 |592 |335 |146 |498|6.51|108
501|210 (157|138 | 377 |176 |0.88 |557|8.92]|157

h isthe control limit, A isthe baseline incidence with Poisson mean of 5, 10, 20 and

50.

179



Vaccine in control Vaccine out of control
RI=1.5 RI=2 RI=3 RI=1.5 RI=2 RI=3

35 40 45 50
1 1
35 40 45 50

1

30
30

Average run length (years) in control
25
1
Average run length (years) out of control

/
o o
T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Control limit Control limit
— — —- Poisson(5) Poisson(10) — — —- Poisson(5) Poisson(10)
~~~~~~~~~~~~ Poisson(20) Poisson(50) seeeesees Poisson(20) Poisson(50)
Graphs by Relative incidence Graphs by Relative incidence

Figure 7.1 Average run lengthsin and out of control for one vaccine

7.7.3 Averagerun length of a CUSUM in control and out of control for five

vaccines: If onesignals, correct it and reset all.

In the case of a surveillance system with several vaccinesin which all CUSUMs are
reset when one signal istriggered, we were interested in the average run length of the
system as awhole. We investigated a system with 5 paralel CUSUMSs. The overall in-
control ARL isthe average timeto signal for any of the component CUSUMSs. Thusiit

is the minimum of the five individual ARL ;s. We based each component CUSUM on

the same parameters, and obtained 10 000 simulations. Then we calculated the

minimum ARL ;s in groups of five. The overall ARL s isthe average of the 2000

minima.
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When monitoring five vaccines, it is unrealistic to expect all five vaccines to be out of
control, hence we looked at a situation in which five vaccines are under surveillance

and only one vaccine is out of control. TheARL,is the time to detection of the out of

control vaccine, starting from 0. A possible realisation is given in Figure 7.2 below.

3
!

25

Control limit h=2

2

15

Values of the cumulative cusum

T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time to signal (Years)

——@ —- Vaccine out of control —@—— 2nd Vaccine in control
------- e---- 3rd Vaccine in control —-—®—-- 4th Vaccine in control
—-—— bth Vaccine in control

ri=2, 2 months risk period poisson mean =10
Figure 7.2 CUSUM chart monitoring possible 5 vaccines with one vaccine out of
control.
Figure 7.2 shows a situation in which five vaccines are under surveillance and al but
one are in control. The design value of the relative incidence is 2 and the expected
baseline frequency of casesis 10 cases every six months. The control limitis2. We
can see that the system first signalled at about 4.5 years with the fourth vaccine
(which was in control). The values of the CUSUM for all five vaccines were reset to
zero and the process continued. After 8 years, the second vaccine signalled (again in
control). Again all CUSUMs were reset to zero. After 10.5 years the fifth vaccine

signalled; again all CUSUMs were reset. Finally in 14" year of observation the
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vaccine out of control signalled and again all the vaccines were reset and the year of
first signalling of the out-of-of control vaccine would have been recorded as 14. Note
that thisis somewhat unusua scenario: in most situations, it is the vaccine out of
control that would signal first as can be seen by the closeness of its trace to the control
limit when the in control vaccines signalled. This process was simulated 2000 times
and the average time to signal was calculated. Table 7.2 below shows the results

obtained from the simulation.

Overadl Table 7.2 shows that the average run length for the system with one vaccine
out of control was shorter than for the system with five vaccinesin control. Figure 7.3
below illustrates that the average run length in either situation increased with
increasing control limit, decreased with increasing baseline incidence and decreased

with increasing design value. However, the values of the ratios ARL,/ARL, for five

vaccines were consistently less than the corresponding values for a single vaccine (see

Table7.1and Table 7.2).
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Figure 7.3 Average run length of a CUSUM in and out of control with 5 vaccines
under surveillance.

Table 7.2 Average run length for in and out of control for 5 vaccines.

h | A4 | ARL,forfive ARL, for five vaccines ratio_ARLo
vaccinein control and one out of control ARL,
(years) (years)

(Design value) (Design value) (Design value)

15 2 3 1.5 2 3 15 2 3
1|5 |523 467 |297 |511 386 | 175 1.02 (121|170
10 | 3.95 296 |266 |3.85 226 |1.23 1.03 (131|216
20| 3.32 223 [ 199 |319 167 |0.89 1.04| 134|223
50 | 1.62 154 | 131 |1.27 1.12 | 0.58 128|137 | 225
2 |5 |14.2 9.09 |561 |136 742 | 312 1.04 123|180
10| 114 6.57 4.59 10.6 4.33 1.84 1.08| 152|249
20| 9.79 493 |4.22 |6.44 246 | 1.16 152|200 | 3.64
50| 5.30 411 3.25 3.11 1.30 0.72 1.70| 3.16 | 451
3|5 |16.9 147 | 115 |153 111 | 412 110132279
10 | 153 136 |976 |134 584 |238 114|233 |4.10
20| 14.2 103 |9.10 |9.18 334 |138 1.55|3.08 | 6.59
50| 11.4 905 |851 |4.19 159 |0.78 2.72 1 5.69 | 10.9
4 |5 |17.7 16.3 | 151 |16.9 146 |5.30 105|112 | 285
10| 165 15.2 14.5 14.7 1.57 2.87 112 | 2.01 | 5.05
20 | 15.7 147 134 |120 416 |1.68 1.31|353|7.98
50| 14.8 14.0 12.1 5.35 1.95 0.87 277|718 139

h isthe control limit, A isthe baseline incidence with Poisson mean of 5, 10, 20 and
50. If one signals, correct it and reset all.
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7.7.4 Averagerun length of a CUSUM in control and out of control for five

vaccines: If one signals, correct and reset only the signalling vaccine.

We now present results from simulations in which when one vaccine of the five
vaccines under surveillance signals, only the signalling vaccine is reset to zero. For
this situation, we defined the system ARL , as the average time between signalsin the
long run when all vaccines are in control. So we |eft the process running until we had

2000 signals and calculated the average time interval between successive signals.

Figure 7.4 below shows a possible realisation of such a surveillance system.

Control limit h=2
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Figure 7.4 CUSUM chart monitoring possible 5 vaccines resetting only the vaccine
out of control.

In the realisation shown in Figure 7.4, al five vaccines under surveillance arein
control and the system is under surveillance for 54 years. The design value in this case

was arelative incidence of 3, the baseline incidence was 50 cases in each monitoring
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interval and the control limit was set at 2. We see that the fifth vaccine signalled first
in the 5™ year. This vaccine alone would then have been looked at, its CUSUM reset
to zero and the surveillance would have continued. The second signal, by the fourth
vaccine, was in the sixth year of observation and a similar action would have been

taken for this vaccine alone, and so on. TheARL , of the system istherefore the
average interval between signals when all vaccines arein control. TheARL,isthe

average time to detect an out-of-control vaccine starting from zero. Table 7.3 below

shows the results from the simul ations.

Table 7.3 Average run length for in and out of control for 5 vaccines.

h | 4 | ARL,5Vaccinesin ARL, 5 vaccines catio = ARL,
control. Averagetime | with one out of control. ARL,
interval between false | Averagetimeinterval
signals (years) between signals (years)
(Design value) (Design value) (Design value)
1.5 2 3 1.5 2 3 15 2 3
1|5 (435 |236 1.78 3.26 | 1.67 1.10 1.33 141 1.62

10276 |174 |159 |205 118 |0.85 135 | 147 1.87
200203 |[151 |149 |146 [092 |0.70 139 |164 |213
501149 |140 [132 |099 |[0.73 |0.58 151 | 192 2.28

2 |5 129 |871 |413 |860 |435 |19 150 |2.00 211
101109 |592 |439 |600 238 |138 182 | 249 3.18
20774 461 |408 |[355 164 |0.98 218 281 |416
501462 384 (292 [198 104 |0.65 233 [3.69 |449

3|5 151 |134 |960 |920 |6.20 |3.37 164 |216 2.85
101138 122 |811 |7.20 469 |251 192 | 260 3.23
200118 [910 |790 |512 |266 |1.27 230 | 342 6.22
501100 [850 |723 |335 |142 |0.75 299 |599 9.64

4 |5 (168 |156 |139 |997 |712 |4.24 169 |219 3.28
10|/154 | 143 |103 |7.90 |514 |276 195 | 278 3.73
201139 [122 |9.60 |590 |[335 |149 236 |364 |644
50119 |10.7 [826 |3.77 |172 |0.85 316 |6.22 9.72

histhe control limit, Aisthe baseline incidence with Poisson mean of 5, 10, 20 and
50. If one signals, correct and reset only the signalling vaccine.

The average time intervalsin control and out of control shows asimilar trend as

before, except that just resetting the problem vaccine means that the average
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frequency of signalsis greater. In particular, the ARL values are shorter than those

ARL,

found in Table 7.2. The other notable difference is that the ratios are generally

1
larger when only the signalling vaccine is reset compared to the situation when all

. . . _ARL
vaccines are reset (see Table 7.2, Tale 7.3 and the corresponding ratios ARLO

). There

1

are exceptions, corresponding to high values of hand high design values, in which the

. ARL . . ..
ratios ARLO are smaller when only the signalling vaccine is reset. These values are
1

indicated in bold in Tables 7.2 and 7.3.
7.8 Conclusion

In this chapter, we explored how the self-controlled case series sample weight

A =nyB,—n log(1-r +e’r)may be used in CUSUM charts. We have shown in

different situations how such CUSUMs may be useful in long term surveillance of
new vaccines. Unlike Marshall et al [110] who concentrated on false discovery rates
(FDR) and successful discovery rates (SDR) in assessing the performance of the
CUSUM, we assessed the performance of the case series CUSUM using average run
lengths, suitably redefined for the surveillance of several vaccines. The method of
Marshall et a [110] based on the fal se detection rate applies perhaps more
appropriately to the surveillance of large number of units. However, it lacks the focus

on detection times which is provided by the system ARL , and ARL , formul ation.
Our ‘system’ ARL ,and ARL, are practically relevant parameters. The

system ARL , measures the time interval between false signals when the system isin
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control. A large value of ARL ,isdesirable. Surveillance of several vaccines
drastically reduces theARL , obtained for asingle vaccine. In an effort to increase the
ARL , we investigated a resetting scheme where all vaccines are reset, not just the

signalling vaccine. This doesindeed increase theARL ,, but also affectsthe ARL, .

TheARL,is an upper limit on the time interval between a problem occurring and
when it is detected (it is an upper limit because the CUSUM will generally be greater
than zero when the problem occurs). This time interval must be kept small; detection

within 2 years might be a reasonable requirement. Thus using the ARL, may

underestimate the speed at which problem vaccines are identified.

Choosing the control limit h should be based on the expected or average run length of
the CUSUM under H,and H, . Based on our simulations, if one vaccine is under
observation, with atwo week risk period, a six months observation period, and we are
interested to detect arelative incidence of 3 based on the assumption that there are
likely to be few cases arising in each six month monitoring interval (baseline
incidence with mean of five), the ssimulation study (Table 7.1) shows that setting the
control limit at 2 will have an average run length of 13.0 years when the systemisin
control and average run length of 1.98 yearswhen it is out of control. These values

appear reasonable.

However, the choice h = 2with design value 3 is no longer adequate when 5 vaccines

areinvolved. If all vaccines are reset upon signalling, then ARL , =5.61and

ARL, =3.12(Table 7.2), whereasiif just signalling vaccines are reset, then

187



ARL, =4.14and ARL, =1.96 (Table 7.3). In both casesthe ARL , values are rather too

short. In this case, usingh = 3may be advisable.

In general when monitoring several vaccines, we note that the system ARL , is much
shorter than the ARL , for asingle vaccine. Also theratios ARL,/ARL, were much

closeto 1 especialy when trying to detect a smaller relative incidence (design value =
1.5) as apparent in Table 7.2. It is generally advisable to use large design values( 2
and 3) and higher control limits. For most of the values we considered, it seems best
to reset the signalling vaccine only rather than resetting all vaccines. However, this
may not be the case for more frequent events (higher A4 ), in which case it could be best

to reset all vaccines upon signalling.

It is not possible to suggest a single control limit to use when using the CUSUM
based on the self-controlled case series method. Thiswill depend on the risk period,
the baseline incidences for the number of cases, the monitoring interval, the number
of vaccines under observation, the way the surveillance is to be carried out especially
when several vaccines are under observation, and the relative incidence to be
detected. Our results show that a practical system may be possible, but requires
careful choice of the parametersh and the design value, if we are to avoid swamping

the system with false positive signals.

Note that even though the ARL is standard practice for evaluating the performance of
aCUSUM [110], others[111, 116] have argued that the ARL is not ideal because the
distribution of the run length may be skewed (though for the case series CUSUM, we

found that median run lengths yielded similar results). Hence one has to be careful as
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to what inferences can be drawn from an alarm signalled. Certainly an alarm signalled
by a CUSUM does not constitute proof of causal association. However, among
various methods for surveillance, it isargued [111, 113] that the ARL for a CUSUM

isoptimal to detect a change that occurs at the specific time.

Overall, amonitoring system using a combination of the SPRT and CUSUM based on

the self-controlled case series method appears to be feasible, and could prove avery

useful tool.
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Chapter 8

Oral vaccines and intussusception

8.1 Introduction:

In this chapter, we describe a study conducted by GlaxoSmithKline (GSK)
Biologicals to assess the incidence of intussusception in children less than 2 years of
agein Latin America. We concentrate on an a-posteriori analysis of the data using the
self-controlled case series method to assess whether intussusception is causally
associated with oral polio vaccine (OPV). In section 8.2, we describe the background
and rationale of the study. The objectives and study design are given in section 8.3,
the study cohort and conduct of the study are described in section 8.4, the descriptive
analysisis given in section 8.5, further statistical analysis is described in section 8.6,

and conclusions are given in section 8.7.

8.2 Background and rationale

In August 1998, the first rotavirus vaccine, a tetravalent rhesus human reassortant
rotavirus vaccine (RRV-TV) manufactured by Wyeth-L ederle (marketed as
RotaShield™) was licensed in the United States of America (USA) and was
recommended for routine immunisation of infants [68, 117]. The recommendations
were suspended in July 1999 after the US Centres for Disease Control and Prevention

(CDC) Adverse Events Reporting System identified 15 children who developed
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intussusception after administration of the vaccine [69]. Additional epidemiological
data lending support to a causal link was evident by October, 1999. Wyeth Lederle
Vaccines and Pediatrics voluntarily withdrew RotaShield™ from the market, and
CDC withdrew its recommendation for routine immunisation [118, 119]. Subsequent
studies showed that RRV-TV is associated with increased risk of intussusception and
the risk was shown to be highest between 3 to 7 days after the first vaccination dose

[38, 120].

For most parents and paediatriciansin the USA, the withdrawal of RotaShield™ was
disappointing because it meant that the winter burden of severe rotavirus diarrhoea,
which leads to an estimated 600 000 clinic visits, 50 000-60 000 hospital admissions,
and 20-40 deaths, might continue for several years before another vaccine became
available [119, 121]. Theinternational medical community was disappointed because
avaccine that might have prevented 440 000 childhood deaths each year, or one in 20
deaths among children younger than 5 years, would remain a distant hope rather than
an anticipated reality [122]. The rate of intussusception is not well known world wide,
but a Cuban study [37] estimated arate of about 45 per 100,000 live births which was
similar to that found in the United States over a comparable period [123]. In some

countries rates lower than those found in the United States have been observed [124].

Intussusception is afairly uncommon type of acute intestinal obstruction. It occurs
primarily in young children and is the most frequent cause of an acute abdominal

emergency inthefirst 2 years of life. It rarely occursin adults [125]. Most cases of
intussusception are considered idiopathic. Children suffering from intussusception

have problems, for example it is reported that about 5% to 10% of cases of
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intussusception include an inverted appendiceal stump, Meckel’s diverticulum
(remnant of the embryonic yolk sac), intestinal polyps, lymphoid hyperplasia,
hemangioma or lymphosarcoma. Twenty percent of the cases are noted to have upper
respiratory tract infections [126]. Several other reports have indicated the presence of
infectious agents in cases of intussusception, but the implications of these findings are

unclear since most studies do not include a comparison group [127-133].

Thereis no clear evidence of association between natural rotavirus infection and
intussusception [132, 134, 135]. Seasonality of rotavirus infection iswell documented
inthe USA, and no seasonal variation in the occurrence of intussusception has been
observed in most studies. Most studies have found that hospitalisation for
intussusception was evenly distributed throughout the year while rotavirus disease
peaked during the known season [136, 137]. However, in the Cuban study [37], cases
showed a marked seasonality with cases peaking in December-May and low in June to
May. The authors [37] argued that some of the observed seasonality was attributable
to the seasonality of birthsin Cuba. In Nigeria, seasonality of intussusception has also
been reported where most cases occur between October and April [138]. Generally,
human rotavirusis not considered as a major etiological agent of intussusception in
infants, though some studies have suggested that rotavirus and other viral epidemics

may play arolein the aetiology of intussusception [139-141].

Following the withdrawal of the RotaShield™ vaccine, there remained an urgent need
for an effective vaccine because of the dramatic disease burden associated with
rotavirus. The background incidence of intussusception in many countriesis not

known. The World Health Organisation (WHO) ethics workgroup [142]
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recommended that such data be collected to help assess the risk/benefit ratio for use of
rotavirus vaccines. Following the rotavirus vaccine experience, concerns arose as to
whether oral polio vaccines might aso be associated with intussusception. Two
previous studies, both exploratory, had reported a significant increased risk of
intussusception in the third or fourth weeks after doses of oral polio vaccine (OPV)
administered at 4 months of age. Other studies have not confirmed these findings [ 36,
37, 143] abeit an increased risk after the third dose in the 14-27 days risk period was
found in one case series study by Andrews et al [36] but this finding was thought to
have been just a chance finding due to the number of risk periods examined. The
authors [36] warned of the need for caution when looking at many risk periods
without an a priori hypothesis . The Food and Drug Administration (FDA) and CDC
had to tackle uncomfortable questions about how to detect such rare events before

licensing future vaccines for rotavirus.

GlaxoSmithKline (GSK) Biologicals [144] have developed a new rotavirus vaccine
based on human rotavirus strain and are currently performing clinical studies world-
wide to evaluate this vaccine. Severa studies are currently ongoing in Latin America
(Argentina, Brazil, Chile, Costa Rica, Honduras, Mexico, Nicaragua, Panama, Peru,
Dominican Republic, Columbia) to test GSK Biologicals' rotavirus vaccine in infants.
In view of the recommendations to obtain intussusception datain different geographic
settings, GSK Biologicals performed the GSK204 surveillance study described here.
Thiswas a hospital based multicentre study to assess the incidence of intussusception

in children less than 2 years of agein Latin America.
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8.3 Objectives and design of the study

The primary objective in the study was:

To estimate the incidence of intussusception in children less than 24 months of age in

hospitalsin Latin America

For the purposes of the thesis, we undertook a-posteriori analyses following
discussions with GSK as part of our collaboration. These analyses were not part of the
initial objectives when the study was set up. But it was agreed that the data set
collected may be suitable for the use of the self-controlled case series method to

investigate the following question:

Isora polio vaccine associated with an increase in intussusception in children less

than 24 months of age?

This can be investigated using the self-controlled case series method taking OPV
vaccination as the exposure. OPV has aready been investigated in the UK for
evidence of causal association with intussusception (Andrews et a [36] ) and in Cuba
[37]. The purpose of these a-posteriori analyses was to identify if there were any

causal agents of intussusception other than rotavirus vaccine as found in the US [69].
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8.4 The study

The study was designed as a hospital-based, multi-centre study. It was designed to
enrol all cases of intussusception (definite, probable, possible or suspected) from
children who received care at participating hospitals and listed on a Screening Sheet.
Subjects were enrolled during a period of at |east one year beginning at study start.

For the enrolled subjects, the participation in the study consisted of an interview of the
subjects parents. The study was designed to be a self-contained study and the
duration of the study was at |east one year. Collection of data was by using hard copy

Case Report Form (CRF).

8.4.1 Study cohort and conduct

The target population for enrolment was all subjects seen on an in or out-patient basis
with confirmed diagnosis of intussusception during a one year period beginning at
study start. All intussusception cases (definite, probable, possible, and suspected) seen
at the participating hospitals were included in the study if they fulfilled the eligibility
criteria. Only subjects whom the investigator believed had met the requirements of the
protocol [144] were enrolled in the study. It was decided that for the purposes of the

present analysis, only definite cases were to be analysed.

Theinclusion criterion for the cases was as follows:
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e A maeor femaleinfant aged less than twenty four months at the time of
diagnosis of intussusception (patients became ineligible on the day of their
second birthday).

e Subject was diagnosed with definite (radiographically, surgically or by post-
mortem examination), probable, possible or suspected intussusception during
the period of one year beginning at study start.

e Heor shedid not have aradiographically or surgically confirmed case of
intussusception prior to the current episode.

e Written informed consent was obtained from the parent or guardian of the

subject.

The study was conducted according to Good Clinical Practice, the Declaration of
Helsinki (Protocol [144] Appendix Al) and the International Guidelines for Ethical
Review of Epidemiologica Studies (Protocol [144] Appendix All) and logical rules
and regulations of each participant country. The study was conducted in eleven Latin
and Central American countries (Argentina, Brazil, Chile, Costa Rica, Honduras,
Mexico, Nicaragua, Panama, Peru, Dominican Republic, and Columbia) between

December 2002 and May 2005.

8.4.2 Casefinding

Children admitted to or cared for at participating sites for definite, probable, possible,

suspected intussusceptions were identified by daily reviews of admission logs,

computerised hospital admission records, emergency department records, surgical

records and radiology logs. Patients complaining of symptoms of intussusception
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usually arrived at the admission and entry (A& E) department or outpatient paediatric
clinicsin the participating hospital. On preliminary query diagnosis by the
paediatricians or A& E medical officers, the patients were admitted into the hospital
and sent to Diagnostic Imaging for an ultrasound scan. On confirmation of
intussusception by ultrasound, air enema (usually performed compared to barium) was
carried out to confirm the diagnosis and reduce the intussusception. If attempts at
reduction failed, the patient was sent for surgical reduction. If there were perforations
or necrosis, then resections were carried out. Patients were then sent to the ward to
recover. Datafrom each case were then keyed into the hospital computer under the
ICD code for intussusception. Written informed consent was sought from child’s

parent or guardian if the child met the eligibility criteria.

8.4.3 Data collection

Data regarding the episode of intussusception including vaccination history, clinical

symptoms noted on admission, diagnostic procedures, surgical and radiographic

procedures performed, microbiology results and methods and outcome of admission

were collected from hospital records, physician records, and vaccination booklets of

all digible subjects as well asinterviews with parents or guardian.

8.5 Descriptive analyses of the GSK 204 data

Overall, there were 531 cases in the GSK 204 data set. Of these, 495 received polio

vaccine, of which 492 had oral polio vaccine and 3 received injected vaccine. As
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mentioned above, only definite cases that had oral polio vaccine were considered for

analysis and these were 456. The following analyses are based on these 456 cases.

8.5.1 Distribution of cases by country

Table 8.1 below shows the number of cases per country and when the study started in

each country.

Table 8.1 Distribution of cases by country

Country Study Start  Study End Number of cases
Argentina 02-Mar-03 02-Mar-05 40
Brazil 21-Mar-03 21-Dec-05 16
Chile 27-Jan-03 31-Jan-05 55
CostaRica 17-Jan-02 31-Dec-03 24
Honduras 27-Jan-03 27-Jan-05 36
Mexico 06-Jan-03 20-Jan-05 120
Nicaragua 03-Mar-03 03-Mar-05 9
Panama 10-Jan-03 10-Jan-05 54
Peru 30-Sep-03 30-Sep-04 39
Dominican Republic 20-Jan-03 20-Jan-05 26
Columbia 02-May-03 02-May-05 37

Thereis much variation in the number of cases across the different countries. Mexico,
Chile, and Panama seem to have had more cases than the other countries and
Nicaragua had the fewest number of cases. The numbers of cases vary enormously,

perhaps in part due to differences in case ascertainment.
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8.5.2 Sex and age at diagnosis

Overal there were more boys (61%) than girls. A similar finding was made in the UK
by Andrews et al [36]. Table 8.2 below summarises age at diagnosisin days by
gender. The mean age at diagnosis did not vary substantially by gender, other than
some indication that girls on average (mean=231.1 days) were dightly older at
diagnosis compared to boys (mean=224 days). Age at diagnosis ranged from a
minimum of 65 days to a maximum of 660 days for girls and from 66 daysto 704
days for boys. Overall the distribution of age at diagnosis was positively skewed
ranging from 65 daysto 704 days with a mean age at diagnosis of 226.8 days and a
median age of 196.5 days. Figure 8.1 below shows the distribution of age at diagnosis.

The graph shows that most diagnoses were made between 100 days and 275 days.

Table 8.2 Distribution of age at diagnosis by gender

Age at diagnosis
days
Median Mean StdDev Minimum Maximum
Female
(176) | 2025 2311 1151 65.0 660.0
Male
(280) 196.0 2240 105.5 66.0 704.0
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Distribution of age at intussusception diagnosis
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Figure 8.1. Distribution of age at diagnosis

8.5.3 Number of doses of OPV received

Children received amaximum of 5 doses of OPV. There was substantial variation in
the number of doses of OPV received by different individuals. Most children received
the first dose, the second dose and the third dose. A few children received afourth,
and only 12 had afifth dose. Table 8.3 below shows the number of doses received by

the children in the data set.

Table 8.3 Distribution of number of individuals who received OPV dosesin

the 204 data set
Dosel Dose?2 Dose3 Dosed Dose5 Dosel?2 Dosel23 Dosel?234 Dosel2345
Yes | 426 358 261 86 12 357 257 86 12
No 30 98 195 370 444 99 199 370 444
Total | 456 456 456 456 456 456 456 456 456

Dosel means number of individuals who received first dose, Dose2 means those who
received second dose etc, and Dosel2 means those who received dosel and dose 2,
Dosel23 those who received dosel, dose2 and dose3 etc.
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As one would expect, age at vaccination increases with the dose given. Table 8.4
below shows this relationship. Further, Figures 8.2 and 8.3 show the distribution of

age at vaccination for each dose.

Table 8.4 Distribution of age at vaccination

Age at vaccination
days
Dose of OPV Mean StdDev  Minimum Maximum
(Numbers) days days days days
First Dose
(426) 411 36.9 0.0 236.0
Second Dose
(358) 102.4 35.1 31.0 206.0
Third Dose
(261) 161.0 42.8 57.0 387.0
Fourth Dose
(86) 215.3 90.7 118.0 585.0
Fifth Dose
(12) 3144  153.0 179.0 619.0

The age distribution for doses 1, 2 and 3 are markedly bimodal, possibly reflecting
different vaccination practices in different countries. Table 8.5 below shows the
distribution of the interval between vaccination and diagnosis of intussusception at
each dose. The interval between receipt of OPV and diagnosis of intussusception
ranged from 3 daysto 667 days for the first dose, for the second dose, the interval
ranged from the day of vaccination to 602 days, for the third dose, six cases were
diagnosed before receiving the third dose, and three cases were diagnosed before
receiving the fourth dose, and the interval between diagnosis and receipt of 5" dose
ranged from 8 days to 193 days. This distribution reflects the way vaccination
histories were collected, namely retrospectively from date of event (other than in the 9

cases with information on post-event vaccination).
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Table 8.5 Distribution of interval between vaccination and diagnosis
of intussusception.

Interval between vaccination and diagnosis at each dose
Doseof OPV | Mean StdDev  Minimum  Maximum
(Numbers) days days days days

First Dose
(426) 184.7 1151 3.0 667.0
Second Dose
(358) 1394 1116 0.0 602.0
Third Dose
(261) 109.7  109.1 -48.0 545.0
Fourth Dose
(86) 105.3 103.8 -54.0 482.0
Fifth Dose
(12) 934 66.7 8.0 193.0

8.6 Statistical analysis

To assess the associ ation between OPV and intussusception, the self-controlled case
series method was used. We used risk periods of 31 days (0-30) after vaccination. We
also split thisinto two risk periods, 0-15 and 16-30 days. These risk periods were
chosen so as to compare with other studieg[36, 37, 143]. For each analysis, we
adjusted for age which was grouped into 24 different age categories of about 30 days
each, except for the analysis of dose 5. Age was grouped in thisway so as to take
account of age in each month over the 2 years of the maximum possible observation
period of each individual. For the analysis of dose 5, it was not sensible to have 24
different age groups as there were only 12 cases. To avoid unbounded estimates due
to not having cases in some age groups, we grouped age in 5 longer age-groups as

follows: 0-150 days, 150-300 days, 300-450 days, 450-600 days and 600-750 days.

One requirement of the self-controlled case series method is that the probability of

exposure should not be affected by the occurrence of an outcome event [7]. In the
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GSK204 study, the histories of the exposure was recorded when or soon after the
cases were entered in the study. There was no follow-up after the outcome event and
hence no information was collected on exposure after entering the study. In such
situations when using the self-controlled case series method for single exposures, it is
recommended to define the observation period starting from the exposure up to the
end of the study (Farrington [2]). However, this study involved five different doses of
vaccines, giving exposures at five different time points. The self-controlled case series
method for censoring events has so far been used with one exposure. When there are
several doses, one has to analyse the data starting with the latest dose first. If thereis
no significant association for this dose then one can analyse the previous dose and
proceed iteratively in thisway. The approach is necessary to avoid bias from
unobserved exposures after the outcome events. Only if such later doses are not
associated with the outcome can the current dose be evaluated in an unbiased way.
Thus, we started by analysing data at dose 5, and only if we got a non significant

result did we analyse dose 4, moving down the doses in thisway. Thus, for the

analysis of dosek , the observation period is|v,,b) wherev, = age at dosek and

b= ageat end of study, and we assume no effect for dosesk+1,k+2,...,5. Hence the

fact that later doses may be unobserved isimmaterial.

Table 8.6 below shows the relative incidences obtained in each analysis for each dose
and for each risk period. Included in the table is the number of eventsin each risk
period at each dose. In all situations the relative incidence is not significantly different
from 1, indicating no association between vaccination and OPV given at any dose,

though the effect of dose 5 is very poorly estimated as there are so few cases.
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Table 8.6 Relative incidence and number of eventsin risk periods after vaccination
for each dose and 95% confidence intervals

Dose | 0-15 days No. of | 16-30 days No. of | 0-30 days No. of
RI (95% CI) events | RI (95% CI) events | RI (95% ClI) events
Opv5 | 2.79 (0.25, 30.9) 1 5.22(0.73, 37.4) 1 4.04 (0.67, 24.4) 2
Opv4 | 1.01(0.38, 2.72) 11 | 0.78(0.30, 2.06) 7 0.88 (0.38, 2.04) 18
Opv3| 0.71(0.41,1.24) 22 0.92 (0.58, 1.46) 28 | 0.84(0.55, 1.28) 50
Opv2 | 0.86 (0.45, 1.61) 14 1.39(0.89, 2.17) 28 1.19(0.79, 1.80) 42
Opvl | 1.34(0.55, 3.24) 8 0.74 (0.30, 1.85) 7 0.97 (0.48, 1.95) 15

Opvl, Opv2, etc =Oral polio vaccine given at first dose, second dose etc, RI=relative
incidence.

8.7 Conclusions

The aim of the analysis was to investigate whether incidence of intussusception in
children less than 24 months of age in hospitals involved in the GSK 204 study was
associated with ora polio vaccine (OPV). The results shown in Table 8.6 do not
support the hypothesis that OPV is causally related to intussusception. Thereis no
evidence of causal relationship at any dose. With the exception of dose 5 the point
estimates are generally close to unity, with narrow confidence intervals, indicating
that the anal yses have good power. For the dose 5 analysis, there were 12 cases, with
two cases in the 30 day risk period. In this case, the confidence intervals are very wide

as one would expect due to lack of power.

One of the advantages of the self-controlled case series method is that it implicitly
controls for fixed factors, hence in these analyses, fixed factors such as social and
economic factors, country, sex, and any bias due to individual level confounding, for
example confounding due to vaccination and unmeasured risk factors for

Intussusception have been taken into account.
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The rigour in the way the study was conducted and the way the cases were ascertained
gives us confidence in these findings. Further our analyses were restricted to definite
cases only. In addition, the cases of intussusception were ascertained independently of
any perceived link of OPV with intussusception since the primary objective of the
study was to assess the incidence of intussusception in children less than 24 months of
age in hospitalsinvolved in the study. The vaccination history of various vaccinesin
each case was then recorded without any focus on a particular vaccine, using data

from vaccination booklets.

Our earlier findings relating to the properties of the self-controlled case series method
in chapters 2 and 3, suggest that the self-controlled case series method gives
effectively unbiased results when the number of casesis at least 20 for arelative
incidence greater than one. Itisonly seriously biased for number of cases of about 10
if the ratio of the risk period to observation period takes extreme values. In this study,
the ratio of risk period to observation period was approximately 0.04.The number of
cases for each dose was all above 50 except for dose 5. Hence we expect estimates at

each of these doses other than dose 5 not to be substantially biased.

In chapters 4 and 5 we saw that for aratio of the risk period of about 0.05, with 100 or
more cases (Table 5.2) one has power of 80% or more to detect a relative incidence of
at least 3. In this data set, we had well over 100 cases for doses 1 to 3 hence the power

appears adequate. The power for dose 5, however, is inadequate.

A limitation of the study was the censoring of post-event vaccination histories. This

would have resulted in some difficulties completing the analysis of all doses had a
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significant result been obtained at some point. But this was not an issue in these data
as there was no significant result at any dose. A further problem we would have had to
consider isthe issue of multiple testing. Again here as there was no significant result,
we did not need to worry unduly about this. Another limitation is the fact that there
were only 12 cases with dose 5. Thisresulted in low power and imprecise confidence
intervals for this dose. A possible solution to thisisto obtain bootstrap confidence
intervals and possibly using multiple imputations for the missing data so as to

reanalyse the data with similar number of cases as those at first dose.

The study was undertaken with the primary objective of providing baseline
information for the surveillance of a new rotavirus vaccine. Such surveillance could
be undertaken using the methods described in chapters 6 and 7. Specificaly, as
surveillance would be focussed on a single new vaccine, the SPRT approach

described in chapter 6 would be most appropriate.
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Chapter 9

Conclusions

The first issue we considered in this thesis was to explore some further statistical
properties of the self-controlled case series method, these were explored in chapter
two. To this end we derived expressions to second order for the asymptotic bias and
variance of the estimator of log relative incidence in asimplified setting. These
enabled us to understand in qualitative terms the impact of quantities such as the
length of the risk period and the relative incidence on the accuracy and precision of
the estimates. We studied these effects graphically to examine how the bias, variance,
and asymptotic mean square error vary with the ratio of the risk period to the
observation period, and how they vary with the relative incidence at fixed sample

Sizes.

The main finding is that asymptotic bias and variance (and hence AMSE) are smallest
when the expected number of events within the risk period and outside the risk period
are equal. The greater the difference between these two expected frequencies, the
greater the bias and variance. The asymptotic second order expression suggest that
thereislittle bias with sample sizesin excess of 20 for the types of scenarioswe

might expect to encounter in practice.

All in al, the self-controlled case series model seems to perform very well.

Asymptotically, the estimates obtained are not biased. The relative incidence
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estimator is biased when trying to detect arelative incidence |ess than one (a situation
which seldom arisesin practice), when the risk period is short, for example 1 day risk

period and when there are very few cases (for example n=10).

The main limitations of the findings from the expressions of the asymptotic bias,
variance and AMSE is that they make no allowance for age effects. We did not take
age into account because the calculations for the bias, variance and AM SE become
unwieldy. Instead we explored the effect of age in the simulation study reported in

chapter three.

The results from the simulations were presented starting with what we called the
‘standard scenario’ which is representative of many studies of paediatric vaccines. In
the standard scenario we found that the estimates were substantially biased for sample
sizes of 20 or less, when the true relative incidence was< 1. However for relative
incidence >1.5 the biases were moderate even with sample sizes of 10 cases, and
very small when the number of cases was>50. Risk periods as short as 1 day and up
to amaximum of 200 days (for atotal observation period of 500 days) were
investigated. In these situations, the estimates were biased for short risk periods. For
example when the risk period was 1 day, the bias was large when the relative
incidence was 0.5 even with 500 cases. Generally speaking, the longer the risk period

in the range considered (up to 200 days), the less biased the estimates were.

Different age effects classified as weak symmetric, strong symmetric, weak monotone

Increasing, strong monotone increasing were explored as was the effect of different
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distributions of age at exposure. There was little evidence that these affected the

performance of the self-controlled case series model.

Indefinite risk periods were looked at. Thiswas done to answer questions by some
researchers [51, 52] who have argued that the self-controlled case series model may
not be effective if oneislooking at a situation were adverse events may manifest
themselves along time after exposure. We explored this issue by extending the risk
periods to indefinite length. Results showed that overall there was little bias except
for large relative incidences and distributions of age at event and age at exposure that
induce confounding between exposure and age effects. This confounding and the bias

it generates can be controlled by including unvaccinated cases.

In most situations explored in the simulation study, the coverage probabilities from
ten thousand samples of different number of cases were in excess of their nominal
values, even in the presence of substantial bias (see Tables 3.1 to 3.20 inclusive). This

was not surprising, since when the expected number of event in the risk period isvery
small, the variance of 3= log(p) (where p= e isthe estimate of the relative

incidence) isvery large, as may be seen from the asymptotic calculations of chapter 2.
Hence the confidence intervals will themselves be very wide. Confidence intervals

based on profile likelihood methods may be preferable, but were not investigated.

In chapter 2 we found that when there are no age effects, the magnitude of the
asymptotic bias depended largely on the imbalance of events in the risk and control
periods, that is when the expected number of eventsin the risk period was less than

that in the control period, the bias was negative, and vice versa. When the two
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expectations were equal, the bias was zero. The simulation study explored more
complex situations and finite samples. Qualitatively similar results emerged for a
given sample size: the bias was greatest in magnitude when the expected number of
eventsin the risk period was much smaller than the expected number in the control
period. In practice, biasisonly areal problem when therisk period is very short or
relative incidenceis low. In other circumstances, sample sizes in excess of 20 appear

to givereliable results.

The overall conclusion from the analytical calculations of Chapter 2 and the
simulation study of Chapter 3 isthat estimates and confidence intervals based on
asymptotic theory are reliable except in extreme scenarios (namely very small sample

sizes, very small risk period, low relative incidence).

The next issue to be investigated was to improve the design of self-controlled case
series studies by obtaining and validating sample size formulae. These were presented
in chapters 4 and 5. We started off by investigating the first published sample size
formula by Farrington et a [3] and found that this formulawas not accurate. We then
investigated other approaches. Thisled usto derive six other sample size formulae,
one based on the distribution of the logarithm of the relative incidence, three based on
the binomial distribution and two based on the signed root likelihood ratio statistic. Of
the six sample size formulae derived, four were found to be accurate. Of the accurate
sample size formulae, two were based on the binomial distribution namely that using
acontinuity correction and that using the arcsine variance stabilising transformation.
The other two good formul ae were based on the signed root likelihood ratio statistic

with and without age adjustment. Our overall recommendation in designing a study
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using the self-controlled case series method without age effectsis to use either the
formula based on the binomial distribution with arcsine variance stabilising
transformation, or the formula based on the signed root likelihood ratio statistic. If age
Isto be taken into consideration, then there is only one sample size formulato use and

thisisthe formulabased on the signed root likelihood ratio statistic.

The third topic that we explored was to extend the self-controlled case series method
to prospective surveillance. We had to find away of incorporating the retrospective
self-controlled case series method within a prospective surveillance system. We used
the ideas of Wald [45] and Page [46] to derive a self-controlled case series based
sequential probability ratio test (SPRT) and cumulative sum (CUSUM) for usein
surveillance. Detailed findings are presented in chapters 6 and 7. We envisage using
the SPRT for focused surveillance of a new vaccine, whereas the CUSUM can be
used for routine surveillance of several established vaccines. A detailed simulation
study showing how the SPRT and CUSUM can be applied was illustrated and results

presented.

A possible limitation of an SPRT and CUSUM surveillance system using the case
series method is the inability to produce asignal inreal time since it is necessarily
based on retrospective data. One possible solution to thisisto make the monitoring
time interval as short as possible. We used a 6-month monitoring interval. The
monitoring time interval could be of any length depending on prior knowledge of the
vaccine being investigated. The surveillance system would rely on routinely collected
case datafor signal detection. Such data have varying degrees of accuracy in

diagnostic coding. It isfor this reason that such a surveillance system should not be
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viewed as the final confirmatory epidemiologic investigation into potential vaccine-
associated adverse events. However, a system based on the case series method does

provide stronger evidence of association than signal based solely on spontaneous

reporting.

Overal, simulation studies showed that the performance of afocused surveillance
system using the SPRT is as desired. Ideally, we would like a system to be very quick
to detect atrue relative incidence greater than 1 and aso if there is no problem we
would like the process not to cross the upper boundary or possibly signal in favour of
the null hypothesis. The simulation study showed that the system was able to achieve
both requirements as indicated both by the probability of crossing the upper boundary

and also by the average time to detection of asignal.

Using the SPRT with the self-controlled cases series |og-likelihood has all the
advantages of using the self-controlled case series method (in particular control of
confounders). The other advantage of using the self-controlled case series SPRT
compared to other methods [79-82] that are frequently used in surveillance systemsis
the prior specification of the Type | and Type |l errors. The Type | and Typell errors
control against making wrong decisions. These error levels apply to the entire SPRT
process, not to each specific monitoring time interval, and thus the analyses take
account of multiple testing. The adjustment for multiple testing is not explicit asin the
Bonferroni adjustment, but rather the adjustment is incorporated into the SPRT in the
way that the upper and lower boundaries are calculated. These boundaries preserve
the specific alpha and beta until afinal decision isreached as to whether the

hypothesis should be accepted or rejected. However, for the self-controlled case series
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based SPRT, we found that the actual Type | and Type Il error probabilities were

lower than the nominal values.

Chapter seven explored how we can use the self-controlled case series method to
construct CUSUM charts for the long term surveillance of severa vaccinesin routine
use. We assessed the performance of the self-controlled case series CUSUM using the
standard practice of using the average run length (ARL) to select chart thresholds and
to summarise performance after adapting the definitions of ARL to the surveillance of
severa vaccines. We used this method in preference to the false discovery rate (FDR)
and successful discovery rate of Marshall et al [110]. We found that our * system

average run length in control’ denoted ARL , and * system average run length out-of-

control’ denoted ARL, are practically relevant and interpretable parameters.

The system average run length in control of a self-controlled case series CUSUM
measures the time interval between false signals when the system isin control. A

large value of ARL , is desirable. We found that surveillance of several vaccines
drastically reduces theARL , obtained for asingle vaccine. In an effort to increase the
ARL , we investigated a resetting scheme where all vaccines are reset, not just the

signalling vaccine. This does indeed increase the system average run length in-

control, but also affects the system average run length out-of-control.

The system average run length out-of-control (ARL,) is an upper limit on the time

between a problem occurring and when it is detected (it is an upper limit because the

CUSUM will generally be greater than zero when the problem occurs). Ideally this
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must be kept small; for example detection within 2 years might be a reasonable

requirement.

The method of Marshall et al [110] based on the false detection rate of a CUSUM
applies perhaps more appropriately to the surveillance of large number of units.
However, it lacks the focus on detection times which is provided by the system
average run length in control and the system average run length out-of-control
formulation. In general our findings showed that when monitoring several vaccines,

the system ARL, of the self-controlled based CUSUM is much shorter than the

ARL , when we are monitoring a single vaccine.

It was not possible to suggest a single control limit to use when using the CUSUM
based on the self-controlled case series method. This depends on the risk period, the
baseline incidence for the number of cases, the observation period (monitoring
interval), the number of vaccines under observation, the way the surveillance will be
carried out especially when severa vaccines are under observation, and the relative
incidence to be detected. Our results showed that a practical system is possible, but
require careful choice of the parametersh and the design value, bearing in mind the

need to avoid swamping the system with false positive signals.

Overdl chapter six and seven showed that a monitoring system for a single new
vaccine based on the self-controlled case series method with the SPRT is feasible, and
could prove to be avery useful tool. Further work is required to incorporate age

effects, select optimal valuesof o and § in the case of the SPRT and the best
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monitoring interval. It is perhaps less clear that a CUSUM -based system for

monitoring several vaccines would produce reliable results.

In chapter 8 we undertook an analysis of data on intussusception and oral polio
vaccine. In line with other studies, we did not find strong evidence of association. One
specific difficulty with these data was how to take account of censoring of exposure
histories at different doses. We proposed a stepwise estimation procedure, starting at
the last dose. In the latter part of the chapter we brought to bear the new insights

obtained in thisthesis on the issues of bias and surveillance of new rotavirus vaccines.

The work undertaken in this thesis suggests some avenues for further research. It
would be interesting to obtain analytic expressions for the asymptotic bias and
variance of the log relative incidence estimator, allowing for age effects. The sample
Size expression we obtained, taking into account age effects, works for short risk
periods, but different methods are required for long risk periods. Perhaps most
importantly, more work is required to design a practical surveillance system using

SPRT or CUSUM, based on the case series method, taking account of age effects.

216



APPENDIX 1

This appendix contains tables of results from the simulation study to test the performance of the self-controlled case series method under

different scenarios as described in each table. The terms used in the tables are explained below.

8.

0.

90 ClI Ninety percent confidence interval

95 Cl Ninety five percent confidence interval

99 CI Ninety nine percent confidence interval

%covered Percentage of the 90%, 95% or 99% confidence intervals that contain the true relative incidence

%low Percentage of the 90%, 95% or 99% confidence intervals where the true value was less than the lower limit
%hi  Percentage of the 90%, 95% or 99% confidence intervals where the true value was greater than the upper limit.
Rl Relativeincidence

Log(RI) Logarithm of the relative incidence

Mean Mean age at vaccination

10.sd Standard deviation of age at vaccination

11. 10 000 samples Ten thousand samples of ten, twenty, fifty, hundred, five hundred, one thousand cases were simulated
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12. Median The median value of the ten thousand estimates was used as a measure of central tendency of the estimates
13.1,5, 10 etc daysrisk period These wererisk periods selected for particular ssimulations, for example 1 day, 5 days, etc.

14. Indefiniterisk period Sometimes indefinite risk periods were used instead of fixed number of days asin 13 above.

15. Prop. Vacc. Standing for proportion vaccinated in a particular ssmulation. The following proportions were explored, 1,

ol
wIiN
N |-
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Rl Log(RI) 10 000 samplesof 20 cases | 10 000 samples of 100 cases | 10 000 samples of 500 cases
Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi
95 CI %low %covered %ohi 95 CI %low %covered %ohi 95 CI %low %covered %ohi
99 Cl %low %covered %ohi 99 Cl %l ow %covered %hi 99 Cl %l ow %covered %hi
0.500 -0.693 0.000 - 0.459 -0.879 0.464 -0.767
(5%, 95%, 0%) (9%, 91%, 0%) (5%, 93%, 2%)
(2%, 98%, 0%) (2%, 98%, 0%) (3%, 97%, 0%)
(2%, 98%, 0%) (2%, 98%, 0%) (1%, 99%, 0%)
1.000 0.000 0.000 —oo 0.947 -0.054 0.995 -0.005
(7%, 92%, 1%) (6%, 94%, 0%) (5%, 90%, 5%)
(6%, 94%, 0%) (3%, 97%, 0%) (2.9%, 95%, 2.1%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.4%)
1500 0.405 0.000 —oo 1404 0.339 1504 0.396
(7%, 93%, 0%) (5%, 95%, 0%) (5%, 91%, 4%)
(3%, 97%, 0%) (4%, 96%, 0%) (3%, 95%, 2%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.8%, 99%, 0.2%)
2.000 0.693 2070 0.727 1.899 0.641 1.978 0.682
(6%, 94%, 0%) (6%, 94%, 0%) (5%, 91%, 4%)
(3%, 97%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
5.000 1.609 4891 1587 4932 1596 5.000 1.609
(4%, 96%, 0%) (6%, 91%, 3%) (6%, 90%, 4%)
(3%, 97%, 0%) (3%, 96%, 1%) (3%, 95%, 2%)
(1%, 99%, 0%) (6%, 91%, 3%) (0.6%, 99%, 0.4%)
10.000 2.303 10.033 2.306 9.996 2.302 9.997 2.302

(6%, 94%, 0%)
(4%, 96%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(3%, 95%, 2%)
(0.7%, 99%, 0.3%)

(5%, 90%, 5%)
(3%, 95%, 2%)
(0.6%, 99%, 0.4%)

Table 3.5 Simulation results for 10

days risk period.
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Rl Log(RI) 10 000 samplesof 20 cases | 10 000 samplesof 100 cases | 10 000 samples of 500 cases
Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi
95 Cl %low %covered %ohi 95 Cl %low %covered %hi 95 Cl %low %covered %hi
99 Cl %low %covered %ohi 99 Cl %l ow %covered %hi 99 Cl %l ow %covered %hi
0.500 -0.693 0.443 -0.813 0491 -0.712 0.497 -0.699
(6%, 94%, 0%) (6%, 92%, 2%) (5%, 91%, 4%)
(3%, 97%, 0%) (2%, 97%, 1%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.4%)
1.000 0.000 0.944 -0.058 0.985 -0.015 0.997 -0.003
(6%, 94%, 0%) (6%, 94%, 0%) (5%, 90%, 5%)
(3%, 97%, 0%) (3%, 97%, 0%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.4%)
1500 0.405 1.493 0.401 1489 0.398 1495 0.402
(6%, 94%, 0%) (5%, 95%, 0%) (5%, 90%, 5%)
(3%, 97%, 0%) (4%, 96%, 0%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.5%, 99%, 0.5%)
2.000 0.693 1964 0.675 1.993 0.690 2.000 0.694
(6%, 94%, 0%) (6%, 90%, 4%) (5%, 90%, 5%)
(3%, 97%, 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.6%, 99%, 0.4%)
5.000 1.609 5137 1.637 5.035 1.616 5.006 1.611
(4%, 96%, 0%) (5%, 90%, 5%) (5%, 90%, 5%)
(3%, 97%, 0%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.7%, 99%,0. 3%) (0.6%, 99%, 0.4%)
10.000 2.303 11.135 2.410 10.196 2.322 10.034 2.306

(6%, 94%, 0%)
(4%, 96%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(3%, 95%, 2%)
(0.7%, 99%, 0.3%)

(5%, 90%, 5%)
(3%, 95%, 2%)
(0.6%, 99%, 0.4%)

Table 3.6 Simulation results for 50

days risk period.
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Rl Log(RI) 10 000 samplesof 20 cases | 10 000 samples of 100 cases | 10 000 samples of 500 cases
Median Median Median
90 Cl %low %covered %hi 90 Cl %l ow %covered %hi 90 Cl %l ow %covered %hi
95 CI %low %covered %ohi 95 CI %low %covered %ohi 95 ClI %low %covered %ohi
99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi
0.500 -0.693 0.454 -0.790 0.493 -0.712 0.498 -0.697
(6%, 90%, 0%) (6%, 90%, 4%) (5%, 91%, 4%)
(3%, 97%, 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.6%, 99%, 0.4%)
1.000 0.000 0.984 -0.016 0.996 -0.015 1.003 0.003
(6%, 92%, 2%) (6%, 94%, 0%) (5%, 90%, 5%)
(3%, 97%, 0%) (3%, 97%, 0%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.5%, 99%, 0.5%)
1.500 0.405 1510 0.412 1505 0.409 1.499 0.405
(6%, 91%, 3%) (5%, 95%, 0%) (5%, 90%, 5%)
(2.6%, 97%, 0.4%) (2.5%, 95%, 2.5%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
2.000 0.693 2.031 0.709 2.013 0.700 2.001 0.694
(6%, 91%, 4%) (6%, 90%, 4%) (5%, 90%, 5%)
(3%, 96%, 1%) (3%, 95%, 2%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
5.000 1.609 5509 1.706 5.071 1.623 5.006 1.611
(6%, 90%, 4%) (5%, 90%, 5%) (5%, 90%, 5%)
(3%, 95%,2%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.7%, 99%,0. 3%) (0.6%, 99%, 0.4%)
10.000 2.303 11.440 2.437 10.327 2.335 10.058 2.308

(6%, 94%, 0%)
(4%, 96%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

Table 3.7 Simulation results for

100 days risk period.
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Rl Log(RI) 10 000 samplesof 20 cases | 10 000 samples of 100 cases | 10 000 samples of 500 cases
Median Median Median
90 Cl %low %covered %hi 90 Cl %l ow %covered %hi 90 Cl %l ow %covered %hi
95 CI %low %covered %ohi 95 CI %low %covered %ohi 95 ClI %low %covered %ohi
99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi
0.500 -0.693 0.478 -0.737 0.493 -0.707 0.499 -0.695
(5%, 92%, 3%) (6%, 90%, 4%) (5%, 91%, 4%)
(1.5%, 97%, 1.5%) (3%, 95%, 2%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
1.000 0.000 0.993 -0.007 0.998 -0.002 1.001 0.001
(5%, 90%, 5%) (5%, 95%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
1.500 0.405 1.529 0.425 1505 0.409 1502 0.407
(5%, 90%, 5%) (5%, 95%, 0%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
2.000 0.693 2.091 0.737 2.008 0.697 2.002 0.694
(4%, 91%, 5%) (6%, 90%, 4%) (5%, 90%, 5%)
(2%, 96%, 2%) (3%, 95%, 2%) (2.5%, 95%, 2.5%)
(0.3%, 99%, 0.7%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
5.000 1.609 5589 1721 5.068 1.623 5.007 1.611
(6%, 90%, 4%) (5%, 90%, 5%) (5%, 90%, 5%)
(3%, 95%,2%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.7%, 99%,0. 3%) (0.5%, 99%, 0.5%)
10.000 2.303 12.048 2.489 10.286 2.331 10.038 2.306

(6%, 94%, 0%)
(4%, 96%, 2%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

Table 3.8 Simulation results for

200 days risk period.
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RI Log(RI) 10 000 samples of 20 cases 10 000 samples of 100 cases 10 000 samples of 500 cases Risk periods
Median Median Median (days)
90 CI %low %covered %hi 90 Cl %low %covered %hi 90 Cl %low %covered %hi
95 CI %low %covered %hi 95 CI %low %covered %hi 95 CI %low %covered %hi
99 CI %low %covered %hi 99 CI %low %covered %hi 99 CI %low %covered %hi
1.000 0.000 0.000 —oo 0.814 -0.206 0.983 -0.018 10
(9%, 91%, 0%) (5%, 95%, 0%) (5%, 90%, 5%)
(4%, 96%, 0%) (4%, 96%, 0%) (2.5%, 95%, 2.5%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
2.000 0.693 1922 0.653 1980 0.683 1998 0.692 10
(7%, 93%, 0%) (5%, 93%, 2%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 97%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
5.000 1.609 4533 1511 4980 1.605 4998 1.609 10
(7%, 93%, 4%) (5%, 90%, 5%) (5%, 90%, 5%)
(4%, 96% ,0%) (3%, 95%, 2%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.8%, 99%, 0. 2%) (0.5%, 99%, 0.5%)
1.000 0.000 0.822 -0.196 0.967 -0.033 0.997 -0.003 25
(9%, 91%, 0%) (5%, 95%, 0%) (5%, 90%, 5%)
(4%, 96%, 0%) (4%, 96%, 0%) (2.5%, 95%, 2.5%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
2,000 0.693 1.839 0.609 1985 0.685 1997 0.692 25
(7%, 93%, 0%) (5%, 93%, 2%) (5%, 90%, 5%)
(4%, 96% ,0%) (3%, 97%, 0%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5,000 1.609 5281 1.664 5049 1.619 5.003 1.610 25
(7%, 93%, 4%) (6%, 90%, 4%) (5%, 90%, 5%)
(3%, 96%, 1%) (3%, 95%, 2%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
1.000 0.000 0.914 -0.090 0.991 -0.009 0.998 -0.002 50
(9%, 91%, 0%) (5%, 95%, 0%) (5%, 90%, 5%)
(4%, 96%, 0%) (4%, 96%, 0%) (2.5%, 95%, 2.5%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
2.000 0.693 2015 0.701 2.009 0.698 2002 0.694 50
(7%, 93%, 0%) (5%, 93%, 2%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 97%, 0%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5.000 1.609 5462 1.698 5090 1.627 5018 1.613 50

(7%, 93%, 4%)
(3%, 96%, 1%)
(1%, 99%, 0%)

(6%, 90%, 4%)
(3%, 95%, 2%)
(0.7%, 99%, 0.32%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

Table 3.9 Simulation

results for strong

symmetric age effect .

223



RI Log(RI) 10 000 samples of 20 cases 10 000 samples of 100 cases 10 000 samples of 500 cases Risk periods
Median Median Median (days)
90 CI %low %covered %hi 90 CI %low %covered %hi 90 CI %low %covered %hi
95 CI %low %covered %hi 95 Cl %low %covered %hi 95 Cl %low %covered %hi
99 Cl %low %covered %hi 99 Cl %low %covered %ohi 99 Cl %low %covered %hi
1.000 0.000 0.000 —oo 0.974 -0.026 0.983 -0.018 10
(9%, 91%, 0%) (5%, 95%, 0%) (5%, 90%, 5%)
(4%, 96%, 0%) (4%, 96%, 0%) (2.5%, 95%, 2.5%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
2,000 0.693 2286 0.827 1973 0.679 1985 0.686 10
(7%, 93%, 0%) (5%, 93%, 29%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 97%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5,000 1.609 5094 1.628 4915 1592 4992 1608 10
(7%, 93%, 0%) (6%, 90%, 4%) (5%, 90%, 5%)
(4%, 96% ,0%) (3%, 95%, 29%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.5%, 99%, 0.5%)
1.000 0.000 0.958 -0.043 0.983 -0.017 0.991 -0.009 25
(8%, 92%, 0%) (6%, 95%, 1%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 95%, 2%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.4%)
2,000 0.693 1955 0.670 1979 0.683 1989 0.688 25
(6%, 94%, 0%) (6%, 91%, 3%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (17%, 99%, 0%) (0.7%, 99%, 0.3%)
5,000 1.609 4789 1.566 5.028 1.615 5,005 1.610 25
(6%, 94%, 0%) (5%, 91%, 4%) (5%, 90%, 5%)
(3%, 97, 0%) (3%, 95%, 29%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (0.6%, 99%, 0.4%) (0.5%, 99%, 0.5%)
1.000 0.000 0.958 -0.043 0.985 -0.016 0.998 -0.002 50
(8%, 92%, 0%) (6%, 95%, 1%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 95%, 2%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.5%, 99%, 0.5%)
2.000 0.693 1971 0.679 1991 0.689 2002 0.694 50
(6%, 94%, 0%) (6%, 91%, 3%) (5%, 90%, 5%)
(4%, 96% ,0%) (3%, 95%, 29%) (3%, 95%, 2%)
(1%, 99%, 0%) (17%, 99%, 0%) (0.7%, 99%, 0.3%)
5.000 1.609 5231 1.655 5,030 1.615 5,015 1612 50

(6%, 90% ,4%)
(3%, 96, 1%)
(1%, 99%, 0%)

(5%, 91%, 4%)
(3%, 95%, 2%)
(0.6%, 99%, 0.4%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

Table 3.10 Simulation

results for weak

monotone increasing age

effect
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RI Log(RI) 10 000 samples of 20 cases 10 000 samples of 100 cases 10 000 samples of 500 cases Risk periods
Median Median Median (days)
90 CI %low %covered %hi 90 Cl %low %covered %hi 90 Cl %low %covered %hi
95 CI %low %covered %hi 95 CI %low %covered %hi 95 CI %low %covered %hi
99 CI %low %covered %hi 99 CI %low %covered %hi 99 CI %low %covered %hi
1.000 0.000 0.000 —oo 0.969 -0.032 0.985 -0.015 10
(8%, 92%, 0%) (6%, 95%, 1%) (6%, 90%, 3%)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(2%, 98%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
2.000 0.693 2197 0.787 1987 0.686 1979 0.683 10
(6%, 94%, 0%) (6%, 94%, 0%) (5%, 90%, 5%)
(4%, 96%, 0%) (4%, 96%, 0%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
5.000 1.609 4687 1545 4,957 1.601 5.000 1.609 10
(6%, 90%, 4%) (6%, 90%, 4%) (5%, 90%, 5%)
(3%, 96, 1%) (3%, 96%, 1%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.5%, 99%, 0.5%)
1.000 0.000 0.941 -0.061 0.972 -0.029 0.995 -0.005 25
(8%, 92%, 0%) (6%, 95%, 1%) (5%, 90%, 5%)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 95%, 2%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
2,000 0.693 1972 0.657 1981 0.684 2.000 0.693 25
(6%, 94%, 0%) (6%, 94%, 0%) (5%, 90%, 5%)
(4%, 96%,0%) (4%, 96%,0%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (1%, 99%, 0%) (2.5%, 99%, 2.5%)
5,000 1.609 5100 1.629 5031 1616 5021 1.614 25
(6%, 92%, 2%) (6%, 90%, 4%) (5%, 90%, 5%)
(3%, 97, 0%) (3%, 96, 1%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.5%, 99%, 0.5%)
1.000 0.000 0.927 -0.075 0.989 -0.011 1.000 0.000 50
(8%, 92%, 0%) (6%, 95%, 1%) (4.5%, 91%, 4. 5%)
(4%, 96%, 0%) (3%, 97%, 0%) (2.5%, 95%, 2.5%)
(2%, 98%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.4%)
2.000 0.693 2036 0.711 2.000 0.693 2.000 0.693 50
(6%, 94%, 0%) (5%, 90%, 5%) (5%, 90%, 5%)
(4%, 96% ,0%) (2.5%, 96%, 1.5%) (2.5%, 95%, 2.5%)
(1%, 99%, 0%) (1%, 99%, 0%) (2.5%, 99%, 2.5%)
5.000 1.609 5447 1.695 509 1.628 5018 1.613 50

(6%, 92% ,2%)
(3%, 97, 0%)
(1%, 99%, 0%)

(6%, 90%, 4%)
(3%, 96, 1%)
(1%, 99%, 0%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 999%, 0.5%)

Table 3.11 Simulation

results for strong

monotone increasing age

effect
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RI Log(RI) 10 000 samples of 100 cases 10 000 samples of 100 cases 10 000 samples of 100 cases Mean
Median Median Median ( standard deviation)
90 CI %low %covered %hi 90 CI %low %covered %hi 90 CI %low %covered %hi
95 Cl %low %covered %hi 95 Cl %low %covered %hi 95 Cl %low %covered %hi
99 CI %low %covered %ohi 99 Cl %low %covered %hi 99 Cl %low %covered %hi
(10 daysrisk period) (25 daysrisk period) (50 daysrisk period)
1.000 0.000 0.890 -0.117 0.970 -0.300 0.991 -0.093 250
(6%, 94%, 0%) (5%, 92%, 3%) (5%, 91%, 4%) (50)
(3%, 97%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.8%, 99%, 0.2%)
2000 0.693 1911 0.648 1971 0678 1985 0.686 250
(6%, 93%, 1%) (5%, 90%, 5%) (5%, 90%, 5%) (50)
(3%, 97%, 0%) (3%, 95%, 2%) (3%, 95% ,2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5000 1.609 4939 1.597 5032 1.616 5.000 1.609 250
(5%, 90%,5%) (5%, 90%,5%) (5%, 90%, 5%) (50)
(2%, 96, 2%) (2.5%, 95, 2.5%) (2.5%, 95, 2.5%)
(1%, 99%, 0%) (0.6%, 99%, 0.2%) (0.6%, 99%, 0.3%)
1.000 0.000 0.984 -0.016 0.980 -0.020 0.986 -0.014 125
(6%, 94%, 0%) (5%, 92%, 3%) (5%, 91%, 4%) (100)
(3%, 97%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.8%, 99%, 0.2%)
2000 0.693 1963 0.674 1990 0.688 1996 0.691 125
(6%, 93%, 1%) (5%, 90%, 5%) (5%, 90%, 5%) (100)
(3%, 97% ,0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5,000 1.609 4948 1599 5.007 1.611 5.053 1.620 125
(6%, 91%, 3%) (6%, 90%, 4%) (5%, 90%, 5%) (100)
(3%, 96, 1%) (3%, 95, 2%) (2.5%, 95, 2.5%)
(1%, 99%, 0%) (0.6%, 99%, 0.2%) (0.6%, 99%, 0.3%)
1.000 0.000 0.966 -0.035 0.970 -0.030 0.986 -0.014 125
(6%, 94%, 0%) (6%, 93%, 1%) (6%, 90%, 4%) (50)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.6%, 99%, 0.3%)
2.000 0.693 1930 0.657 1985 0.686 1996 0.691 125
(6%, 93%, 1%) (5%, 90%, 5%) (5%, 90%, 5%) (50)
(3%, 97%, 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5.000 1.609 4911 1591 4991 1.608 5,041 1.618 125
(6%, 91%, 3%) (6%, 90% ,4%) (5%, 90%, 5%) (50)

(3%, 96, 1%)
(1%, 99%, 0%)

(3%, 95, 2%)
(0.6%, 99%, 0.2%)

(2.5%, 95, 2.5%)
(0.6%, 999%, 0.3%)

Table 3.12 Simulation

results for weak
symmetric age effect
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RI Log(RI) 10 000 samples of 100 cases 10 000 samples of 100 cases 10 000 samples of 100 cases Mean
Median Median Median ( standard deviation)
90 CI %low %covered %hi 90 CI %low %covered %hi 90 CI %low %covered %hi
95 Cl %low %covered %hi 95 Cl %low %covered %hi 95 Cl %low %covered %hi
99 CI %low %covered %ohi 99 Cl %low %covered %hi 99 Cl %low %covered %hi
(10 daysrisk period) (25 daysrisk period) (50 daysrisk period)
1.000 0.000 0.941 -0.061 0.970 -0.030 0.981 -0.019 250
(6%, 94%, 0%) (5%, 93%, 1%) (5%, 91%, 4%) (50)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 95%, 2%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.7%, 99%, 0.3%)
2000 0.693 1933 0.659 1984 0.686 1997 0.692 250
(6%, 94%, 0%) (5%, 90%, 5%) (5%, 90%, 5%) (50)
(3%, 97%, 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5000 1.609 4937 1597 5018 1.613 5085 1.626 250
(6%, 91%, 3%) (6%, 90%, 4%) (5%, 90%, 5%) (50)
(3%, 96, 1%) (3%, 95, 2%) (2.5%, 95, 2.5%)
(1%, 99%, 0%) (0.6%, 99%, 0.29%) (0.6%, 99%, 0.3%)
1.000 0.000 0.789 -0.237 0.949 -0.052 0.974 -0.026 125
(5%, 95%, 0%) (6%, 94%, 0%) (6%, 91%, 3%) (100)
(4%, 96%, 0%) (3%, 97%, 0%) (3%, 96%, 1%)
(1%, 99%, 0%) (1%, 99%, 0%) (1%, 99%, 0%)
2000 0.693 1799 0.587 1966 0.676 2000 0.693 125
(6%, 93%, 1%) (5%, 90%, 5%) (5%, 90%, 5%) (100)
(3%, 97%, 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5,000 1.609 4927 1595 5.054 1.620 5,095 1.628 125
(6%, 91%, 3%) (6%, 90%, 4%) (5%, 90%, 5%) (100)
(3%, 96, 1%) (3%, 95, 2%) (2.5%, 95, 2.5%)
(1%, 99%, 0%) (0.6%, 99%, 0.2%) (0.6%, 99%, 0.3%)
1.000 0.000 0.823 -0.196 0.962 -0.039 0.983 -0.017 125
(6%, 94%, 0%) (6%, 94%, 0%) (5%, 92%, 3%) (50)
(4%, 96%, 0%) (4%, 96%, 0%) (3%, 97%, 0%)
(1%, 99%, 0%) (1%, 99%, 0%) (0.4%, 99%, 0.6%)
2.000 0.693 1.896 0.640 1977 0.686 2022 0.704 125
(6%, 93%, 1%) (5%, 90%, 5%) (5%, 90%, 5%) (50)
(3%, 97% , 0%) (3%, 95%, 2%) (3%, 95%, 2%)
(1%, 99%, 0%) (0.7%, 99%, 0.3%) (0.7%, 99%, 0.3%)
5.000 1.609 4949 1599 5,061 1.622 5.097 1.629 125
(6%, 91%, 3%) (6%, 90%, 4%) (5%, 90%, 5%) (50)

(3%, 96, 1%)
(1%, 99%, 0%)

(3%, 95, 2%)
(0.6%, 99%, 0.2%)

(2.5%, 95, 2.5%)
(0.6%, 999%, 0.3%)

Table 3.13 Simulation

results for strong

monotone increasing age

effect
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Table 3.14 Simulations for indefinite risk period with weak symmetric age effect, 250 days mean age at exposure, with 100 days standard

deviation.
RI Log(RI) 10 000 samples of 100 cases | 10 000 samples of 120 cases | 10 000 samples of 150 cases | 10 000 samples of 200 cases
Median Median Median Median
90 Cl %low %covered %hi 90 Cl %l ow %covered %hi 90 Cl %low %covered %hi 90 Cl %low %covered %hi
95 Cl %low %covered %hi 95 Cl %low %covered %hi 95 Cl %low %covered %ohi 95 Cl %low %covered %hi
99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi
(100 cases, Prop. Vacc. 1) (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
1.000 0.000 1.007 0.007 1.000 0.000 0.999 -0.002 1.000 0.000
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
2.000 0.693 2167 0.704 2.009 0.698 2.004 0.695 2.004 0.695
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
5.000 1.609 5,049 1619 5,021 1614 5.059 1621 5.029 1615

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)
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Table 3.15 Simulations for indefinite risk period with weak symmetric age effect, 125 days mean age at exposure, with 50 days standard

deviation.
10 000 samples of 100 cases | 10 000 samples of 120 cases | 10 000 samplesof 150 cases | 10 000 samples of 200 cases
RI Log(RI) Median Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 Cl %low %covered %ohi 90 Cl %low %covered %ohi
95 CI %low %covered %ohi 95 ClI %low %covered %ohi 95 Cl %low %covered %ohi 95 Cl %low %covered %ohi
99 CI %low %ocovered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %hi
(100 cases, Prop. Vacc. 1) (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
1.000 0.000 1.009 0.009 0999 -0.001 0.999 -0.001 1.004 0.004
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
2.000 0.693 1.993 0.690 1.993 0.690 2016 0.701 2.004 0.695
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
5,000 1.609 5029 1.630 5160 1.641 5223 1.653 5155 1.640

(4.5%, 91%, 4.5%)
(2%, 96, 2%)
(0.1%, 99%, 0.9%)

(4.5%, 91% ,4.5%)
(1%, 96, 3%)
(0%, 99%, 1%)

(3%, 92%, 5%)
(1%, 97, 2%)
(0%, 99%, 1%)

(3%, 91%, 6%)
(2.5%, 96, 1.5%)
(0%, 99%, 1%)
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Table 3.16 Simulations for indefinite risk period with strong monotone increasing age effect, 250 days mean age at exposure, with 100 days

standard deviation.

RI Log(RI) | 10000 samplesof 100 cases | 10 000 samplesof 120 cases | 10 000 samples of 150 cases | 10 000 samples of 200 cases
Median Median Median Median
90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 Cl %low %covered %ohi 90 Cl %low %covered %ohi
95 CI %low %covered %ohi 95 ClI %low %covered %ohi 95 Cl %low %covered %ohi 95 Cl %low %covered %ohi
99 CI %low %ocovered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %hi
(100 cases, Prop. Vacc. 1) (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
1.000 0.000 1.002 0.002 0.999 0.001 0.996 -0.004 0.999 -0.001
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
2.000 0.693 2.004 0.695 2011 0.699 1.997 0.691 2011 0.699
5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2%, 96%, 2%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
5,000 1.609 5130 1.635 5112 1.632 5131 1.635 5077 1.625

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(4.5%, 91%, 4.5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%)
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Table 3.17 Simulations for indefinite risk period with strong monotone increasing age effect, 125 days mean age at exposure, with 50 days
standard deviation.

RI Log(RI) | 10000 samplesof 100 cases | 10 000 samplesof 120 cases | 10 000 samples of 150 cases | 10 000 samples of 200 cases
Median Median Median Median
90 CI %low %covered %hi 90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi
95 CI %low %covered %ohi 95 ClI %low %covered %ohi 95 CI %low %covered %ohi 95 CI %low %covered %ohi
99 Cl %l ow %covered %hi 99 Cl %l ow %covered %hi 99 Cl %low %covered %ohi 99 Cl %low %covered %ohi
(100 cases, Prop. Vacc. 1) (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
1.000 0.000 1.004 0.004 1.004 0.004 1.001 0.001 1.005 0.005
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2.5%, 95%, 2.5%) (2%, 96%, 2%) (2.5%, 95%, 2.5%) (2.5%, 95%, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.3%, 99%, 0.7%) (0.5%, 99%, 0.5%)
2.000 0.693 2.044 0.715 2.040 0.713 2.039 0.712 2.039 0.713
(5%, 90%, 5%) (4%, 91%, 5%) (3%, 91%, 6%) (3%, 91%, 6%)
(2%, 96%, 2%) (2%, 96, 2%) (1%, 96%, 3%) (1%, 97%, 2%)
(0.1%, 99%, 0.9%) (0.1%, 99%, 0.9%) (0%, 99%, 1%) (0%, 99%, 1%))
5.000 1.609 5450 1.696 5.305 1.669 5.385 1.684 5314 1670

(1%, 93%, 6%)
(2%, 96, 2%)
(0%, 99%, 1%)

(0.5%, 94%, 5.5%)
(0%, 97, 3%)
(0%, 99%, 1%)

(0%, 94%, 6%)
(0%, 97, 3%)
(0%, 99%, 1%)

(0%, 94%, 6%)
(0%, 97, 3%)
(0%, 99%, 1%)
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Table 3.18 Simulations for strong monotone increasing age effect and indefinite risk period

Rl Log(RI) | 10 000 samplesof 100 cases | 10 000 samplesof 120 cases | 10 000 samplesof 150 cases | 10 000 samplesof 200 cases | Mean %)
Median Median Median Median
90 CI %l ow %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %l ow %covered %ohi
95 CI %l ow %covered %ohi 95 ClI %low %covered %ohi 95 ClI %low %covered %ohi 95 Cl %l ow %covered %ohi
99 CI %l ow %covered %ohi 99 Cl %low %covered %hi 99 Cl %low %covered %hi 99 CI %l ow %covered %ohi
(100 cases, Prop. Vacc. 1) (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
1.000 0.000 0.914 -0.090 0.988 -0.012 1.009 0.009 1.003 0.003 125 10
(2%, 96%, 2%) (5%, 91%, 4%) (5%, 91%, 4%) (1%, 95%, 4%)
(0%, 100, 0%) (2%, 96, 2%) (2%, 96, 2%) (0%, 97, 3%)
(0%, 100%, 0%) (0%, 100%, 0%) (0%, 100%, 0%) (0%, 99%, 1%)
1.000 0.000 1.002 0.002 0.992 -0.008 0.988 -0.012 0.996 -0.004 125 20
(5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (5%, 90%, 5%)
(2%, 96, 2%) (2.5%, 95, 2.5%) (2.5%, 95, 2.5%) (2.5%, 95, 2.5%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0%, 100%, 0%0)
1.000 0.000 1.003 0.003 1.002 0.002 1.001 0.001 1.009 0.002 125 30
(5%, 95%, 5%) (5%, 90%, 5%) (5%, 90%, 5%) (4%, 91%, 5%)
(2.5%, 95, 2.5%) (2.5%, 95, 2.5%) (2.5%, 95, 2.5%) (2%, 96, 2%)
(0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%) (0.5%, 99%, 0.5%)
1.000 0.000 1.006 0.006 0.999 0.001 1.014 0.014 1.010 0.009 125 40

(5%, 90%, 5%)
(2.5%, 95, 2.5%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2%, 95, 3%)
(0%, 99%, 1%)

(5%, 95%, 5%)
(2.5%, 95, 2.5%)
(0%, 100%,0%)

(4%, 91%, 5%)
(2%, 96, 2%)
(0%, 99%, 1%)
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Table 3.19 Simulation for strong monotone increasing age effect and indefinite risk period.

Rl Log(RI) | 10000 samplesof 100 cases | 10 000 samplesof 120 cases | 10 000 samplesof 150 cases | 10 000 samples of 200 cases | Mean %)
Median Median Median Median
90 Cl %low %covered %hi 90 Cl %low %covered %ohi 90 Cl %low %covered %hi 90 Cl %low %covered %hi
95 ClI %low %covered %ohi 95 CI %low %covered %ohi 95 CI %low %covered %ohi 95 ClI %low %covered %ohi
99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi 99 CI %low %covered %ohi
(100 cases, Prop. Vacc. 1) | (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
2.000 0.693 1.850 0.615 1981 0.684 2.046 0.716 2.071 0.728 125 10
(0%, 96%, 4%) (2%, 95%, 3%) (4%, 91%, 5%) (1%, 95%, 4%)
(0%, 98, 2%) (0%, 98, 2%) (1%, 96, 3%) (0%, 97, 3%)
(0%, 100%, 0%) (0%, 100%, 0%) (0%, 100%, 0%) (0%, 99%, 1%)
2.000 0.693 2.055 0.720 1.995 0.691 2.051 0.719 2.071 0.728 125 20
(2%, 92%, 6%0) (5%, 90%, 5%) (4%, 91%, 5%) (0%, 94%, 6%)
(0%, 97, 3%) (1%, 96, 3%) (1%, 96, 3%) (0%, 97, 3%)
(0%, 99%, 1%) (0%, 100%, 0%) (0%, 100%, 0%) (0%, 99%, 1%)
2.000 0.693 2.038 0.712 2.047 0.764 2.058 0.722 2.039 0.712 125 30
(5%, 95%, 5%) (0%, 94%, 6%) (4%, 92%, 4%) (0%, 94%, 6%0)
(1%, 96, 3%) (0%, 97, 3%) (1%, 97, 2%) (0%, 97, 3%)
(0%, 99%, 1%) (0%, 99%, 1%) (0%, 100%, 0%) (0%, 99%, 1%)
2.000 0.693 2.056 0.721 2.024 0.705 2.022 0.704 2.071 0.728 125 40

(4%, 92%, 4%)
(1%, 97, 2%)
(0.5%, 99%, 0.5%)

(5%, 90%, 5%)
(2%, 95, 3%)
(0%, 99%, 1%)

(4%, 91%, 6%)
(1%, 96, 3%)
(0%, 100%, 0%)

(3%, 92%, 5%)
(1%, 97, 2%)
(0%, 99%, 1%)
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Table 3.20 Simulations for strong monotone increasing age effect and indefinite risk period

Rl Log(RI) | 10 000 samplesof 100 cases | 10 000 samplesof 120 cases | 10 000 samplesof 150 cases | 10 000 samplesof 200 cases | Mean %)
Median Median Median Median
90 CI %l ow %covered %ohi 90 CI %low %covered %ohi 90 CI %low %covered %ohi 90 CI %l ow %covered %ohi
95 CI %l ow %covered %ohi 95 ClI %low %covered %ohi 95 ClI %low %covered %ohi 95 ClI %l ow %ocovered %ohi
99 CI %l ow %covered %ohi 99 Cl %low %covered %hi 99 Cl %low %covered %hi 99 CI %l ow %covered %ohi
(100 cases, Prop. Vacc. 1) (120 cases, Prop. Vacc. 5/6) | (150 cases, Prop. Vacc. 2/3) | (200 cases, Prop. Vacc. 1/2)
5.000 1.609 7.824 2824 5362 1.679 5253 1.659 5334 1674 125 10
(0%, 94%, 6%) (2%, 95%, 3%) (1%, 95%, 4%) (1%, 95%, 4%)
(0%, 98, 2%) (0%, 98, 2%) (0%, 98, 2%) (0%, 97, 3%)
(0%, 100%, 0%) (0%, 100%, 0%) (0%, 100%, 0%) (0%, 99%, 1%)
5000 1.609 7506 2.016 5311 1.670 5374 1.682 5309 1.669 125 20
(2%, 92%, 6%) (2%, 93%, 5%) (0%, 94%, 6%) (0%, 94%, 6%)
(0%, 97, 3%) (0%, 97, 3%) (0%, 97, 3%) (0%, 97, 3%)
(0%, 99%, 1%) (0%, 99%, 1%) (0%, 99%, 1%) (0%, 99%, 1%)
5000 1.609 5660 1.733 5221 2445 5378 1.682 5292 1.666 125 30
(0%, 93%, 7%) (0%, 94%, 6%) (0%, 94%, 6%) (0%, 94%, 6%)
(0%, 96, 4%) (0%, 97, 3%) (0%, 97, 3%) (0%, 97, 3%)
(0%, 99%, 1%) (0%, 99%, 1%) (0%, 99%,1%) (0%, 99%, 1%)
5000 1.609 5568 1.717 5223 1.653 5398 1.686 5303 1.668 125 40

(0%, 94%, 6%)
(0%, 97, 3%)
(0%, 99%, 1%)

(0%, 94%, 6%)
(0%, 97, 3%)
(0%, 99%, 1%)

(0%, 94%, 6%)
(0%, 97, 3%)
(0%, 99%,1%)

(0%, 94%, 6%)
(0%, 98, 2%)
(0%, 99%, 1%)
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APPENDI X 2

The case series likelihood for the parameters fand ¢, j =0,...,J —1is

S

G~ TTHTT| 2Pl B
i=1 j=0 k=01 ZZE‘Xp(a’S+ﬁt)q$

s=0t=0,1
whereg,, isthe observation time for eventi in age group j and risk period

k (k=0, unexposed; k =1, exposed), and n,, isthe number of events (0 or 1)
occurring in this period. Note that in the formulation, independent multiple events
within the same individua are represented as separate termsin the likelihood.
Suppose now that the «; are regarded as known. The log likelihood ratio for 5 is

) D exp(o, + ft)eg
2| >nBk- Zn log “Zexp(a

i,j,k

If the event i occursin an unexposed individual, its contribution to D(/3)is zero.
Otherwise, under the assumptions set out in section 5.6.1,

Zexp(as)QSt :ieases
Zexp (o +Bt)e JZe”’e +exp( )(eﬂ 1)e

s=0

where s(i)isthe age group exposure. Thus

J-1
D(B)= Z{X,B—ij log(r,e” +1-r, )}
j=0
where x isthetotal number of events occurring in arisk period, m, isthetotal

number of events occurring in individuals exposed at age j, and r;isdefinedin
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section 5.6.2. The log likelihood ratio reaches its minimum at the maximum

likelihood estimator /3, which is the solution of

- re

x=ym—1——
i reﬁ+1 r

Substituting this expression for xin D(,B)weobtain D(,B) The test statistic upon
which the sample size calculation is based is

T(B)=sun(4)|D(B)
The asymptotic variance of ,B is

1

j=0

e {fmjﬁj ix )}

where the 7; are defined in section 5.6.2. Expanding T (,B) inaTaylor seriesaround

[, and substituting V (,B) we obtain, to first order inn,

1

E[T(,B)}D sgn( A \/{ng |:ﬂ71' —~log(r,e” +1-r, )J}
V[T(ﬁ)}D’B—ZJ mz, (1-7,)

CRUTES

Finaly, replace m; by nv; , with v, as defined in section 5.6.2. Thus

|_\

T (,B) ~N (sgn(,B)\/ﬁ, B)where A and B are given in equation (5.7). Note that by

expanding A and B to second order in 3, it can be shown that

A—0andB —1las/f — 0,as expected.
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List of acronyms

ADRs Adverse Drug Reactions

A& E Admission and Entry

AM SE Asymptotic Mean Square Error
ARL Average Run Length

ARL, system Average Run Length in-control
ARL, system Average Run Length out-control

BCPNN Bayesian Confidence Propagation Neural Network
CCR Coded Clinical Records

CDC Centres for Disease Control and prevention
ClI Confidence Interval

CRF Case Report Form

CUSUM Cumulative Sum

DTP Diphteria Tetanus Pertussis

FDA Food and Drug Administration

FDR Fase Discovery Rate

GSK GlasxoSmithKline

GPRD General Practice Research Database
HES Hospital Episode Statistics

H, Null hypothesis
H, Alternative Hypothesis

| CD International Classification of Diseases
I TP Idiopathic Thrombocytpenic Purpura
M CSE Monte Carlo Standard Error

MHRA Medicines and Healthcare products Regulatory Agency
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MMR Measles Mumps and Rubella
OPV Oral Polio Vaccine

PAS Patient Administration System
PRR Proportional Reporting Ratios
RI Relative Incidence

RI ,Relative Incidence under the null hypothesis

RL, The design Relative Incidence value used in the SPRT
RL, The actual Relative Incidence value used to generate data

RRV-TV Tetravalent Rhesus Human Reassortant Rotavirux Vaccine

ROR Reporting Odds Ratios

SCCS Sdlf-Controlled Case Series

SCCSM Sdlf-Controlled Case Series Method
SDR Successful Discovery Rate

SPC Statistical Process Control

SPRT Sequentia Probability Ratio Test

UK United Kingdom

USA United States America

US United States

VAERS Vaccine Adverse Event Reporting System
VSD Vaccine Safety Datalink

WHO World Health Organisation
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APPENDIX 3
Papers published or submitted from thethesis
Sample sizes for self-controlled case series studies [44] (Covering chapter 4 and
5).
Self-controlled case series analyses. small sample performance][145] (Covering
chapter 2 and 3).
Tutorial in Biostatistics: The self-controlled case series method [7] (Covering part

of chapter 4).
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