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Abstract 
 

 
The self-controlled case series method (SCCSM) is a novel study design to investigate 

associations between acute responses with transient point exposures (for example 

vaccination).  The method provides an attractive alternative to cohort and case-control 

designs. The method is unusual in that it requires data only on individuals who 

experience a response (the ‘cases’). The method works as follows. Prior to the study a 

post-exposure risk period is defined, which corresponds to the period in which 

responses causally related to exposure are likely to occur. An observation period is 

also defined, and individuals with responses arising within this observation period are 

sampled. The data are then analysed using a Poisson model, conditional on the total 

number of events occurring for each individual. This conditioning ensures that 

including only cases does not bias the relative risk estimator. 

  

The self-controlled case series method has been used to good effect in many settings, 

particularly in investigating putative associations between adverse events and 

paediatric vaccines. However, so far only limited research has been undertaken on the 

statistical properties of the method in finite samples, and virtually no work has been 

undertaken on design issues. The method also needs to be extended in various 

directions, for example application in surveillance methods. 

 

This thesis provides detailed investigations of these topics. To this end, expressions 

for the asymptotic bias, variance and mean square error of the log-relative incidence 

are derived. Simulation studies taking account of age are carried out to study small 

and medium sample performance. Sample size formulae are obtained and validated 
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via simulations, thus improving the design of self-controlled case series studies. The 

method is extended to applications in surveillance and simulation studies are 

conducted to evaluate this use of the method. The methods are illustrated using data 

on intussusception and oral polio vaccine. 

 



 4 

Acknowledgements 

I greatly appreciate the contributions of my supervisor Prof. Paddy Farrington, not 

only for his guidance and invaluable advice on the thesis, but also for his 

thoughtfulness, care and concern through out the last three years. In addition, I am 

extremely grateful for his help on computing aspects of the project, also with his 

many suggestions for improvement on the drafts of all the chapters in the thesis. Our 

weekly meetings during the last three years were very enjoyable, there was never a 

dull moment in our meetings, and the discussions of theoretical issues arising from the 

research were very interesting. I was always looking forward to the meetings so as to 

reveal my findings following his advice.  

 

I am indebted to my other co-supervisors Prof. Frank Critchley (Open University), Dr 

Thomas Verstraeten (GlaxoSmithKline (GSK) in Belgium) and my third-party 

monitor, Dr Karen Vines (Open University). I thank the EPSRC and GSK Biologicals 

for funding this research via a CASE studentship. My visits to GSK in Belgium 

always gave me another perspective of doing research in industry. I received various 

help while visiting GSK in the last two years and I am very grateful to you all. To 

mention but a few, thanks to Dr Thomas Breuer, Dr Bart Spiessens, Dr Claire 

Newbern, and Mrs Jenny Schelfhout.  

 

I thank Dr Heather Whitaker my office mate for her help in various situations; she 

was always my first point of call for help whenever I got stuck in one way or the 

other. Many thanks to Mrs Val Spearman for sorting out administration issues that I 



 5 

needed in the last three years. I also remain truly grateful for the wealth of support and 

talent I shared with so many researchers, friends and colleagues. 

 

Finally, I wish to thank most sincerely my wife, Fleur and our beloved two children 

Martha and Frankie, for their understanding and patience during the last three years. 

This thesis would not have been possible without their help and support.  



 6 

Contents 

Page 

Chapter 1      Introduction and literature review                                                    19 

1.1 Introduction                                                                                           19 

1.2 Background                                                                                           20 

1.3 Motivation                                                                                             21 

1.4 Advantages and limitations                                                                   22 

1.5 Why use the self-controlled case series method                                    23 

1.6 Other case-only method                                                                         25 

1.7 Where the self-controlled case series method has been used                26 

1.8 Issues to explore and outline of the thesis                                             28 

Chapter 2     The self-controlled case series model                                                  31   

            2.1    Introduction                                                                                             31 

            2.2   The self-controlled case series model                                                       31 

            2.3   Derivation of the bias of the estimator                                                     36 

            2.4   Graphical study of the bias                                                                       39   

            2.5   Asymptotic variance                                                                                 45 

            2.6   Graphical study of the asymptotic variance                                             48 

            2.7   Asymptotic mean square error                                                                 53 

            2.8  Graphical study of AMSE                                                                         55 

            2.9  Conclusions                                                                                               58 

Chapter 3     Performance of the self-controlled case series 

                      method: Simulation study                                                                    60 

            3.1    Introduction                                                                                             60 

Contents    



 7 

            3.2    The structure of the simulation study                                                      61 

                     3.2.1   The parameters                                                                             63 

                     3.2.2    Age effects                                                                                   63 

                     3.2.3    Exposure distribution                                                                  65 

                     3.2.4    Risk periods                                                                                 67 

            3.3    Results from the simulation study                                                           68 

                     3.3.1    The standard scenario                                                                  68 

                     3.3.2     Varying the risk period                                                               73 

                     3.3.3     Varying the age effect                                                                79 

                     3.3.4      Varying the age at exposure                                                      81 

                     3.3.5      Indefinite risk periods                                                                84 

            3.4    Conclusion                                                                                               87 

Chapter 4   Sample size formulae for the self-controlled case series  

                    method: first attempts                                                                            91 

           4.1   Introduction                                                                                               91 

           4.2   Background and notation                                                                          92 

           4.3   Sample size formula without age effects                                                   94 

                   4.3.1  Sample size formula based on sampling distribution 

             of relative incidence                                                                        94 

4.3.2 Sample size formula based on sampling distribution 

 of log-relative incidence                                                              96 

4.3.3 Sample size formula using second order variance of  

  log-relative incidence                                                                 97 

                      4.3.4   Sample size formula based on binomial proportion                    98 

Contents    



 8 

            4.4    Comparative evaluation of sample size formulae (4.5), (4.6) 

                     (4.6), (4.7) and (4.8)                                                                              100 

                      4.4.1  Simulation study                                                                         100 

                     4.4.2   Results                                                                                        101 

                      4.4.3   Saw-tooth phenomenon                                                             105 

            4.5     Discussion                                                                                            106 

   Chapter 5   Improved sample size formulae for the self-controlled 

                    case series method                                                                                108 

           5.1    Introduction                                                                                            108 

           5.2    Sample size formula based on binomial proportion with 

                    continuity correction                                                                               108 

5.3 Sample size formula based on the binomial proportion 

with arcsine transformation                                                                    109 

           5.4    Sample size formula based on the signed root likelihood ratio              110 

           5.5    Comparative evaluation of sample size formulae (5.1), (5.2) 

                    and (5.4)                                                                                                  113 

                    5.5.1   Results from the simulation study                                               113 

           5.6   Sample size formula with age effect                                                       117 

                   5.6.1   Assumption and notation                                                              117 

                   5.6.2   Sample size formula allowing for age effects                              118 

                  5.6.3   Sample size formula for the number of cases                                120 

          5.7   Evaluation of sample size formula with age effects                                 120 

                  5.7.1   Simulation study                                                                            120 

                   5.7.2   Results                                                                                          122 

Contents   



 9 

           5.8   Conclusion                                                                                               124 

Chapter 6   Application of the self-controlled case series  

                    method in surveillance                                                                         127 

            6.1   Introduction                                                                                            127 

            6.2   Surveillance systems of adverse events                                                  127 

            6.3   Background and review of some surveillance method                           130 

            6.4   The sequential probability ratio test (SPRT)                                      133 

            6.5   Theoretical properties of the SPRT                                                        136 

                    6.5.1   Some theory on the relations of quantities 

                                , ,  and  A Bα β in an SPRT                                                          136 

                     6.5.2   Calculating the constant A and B                                               138 

             6.6   Application of an SPRT with the self-controlled case  

                     series method                                                                                         142 

                     6.6.1   Surveillance scenario                                                                  142 

                     6.6.2   Specifications in the SPRT chart                                                145 

             6.7   Adjusting for age in the SPRT                                                              148 

             6.8   Simulation study: evaluating the performance of the  

                     case series SPRT                                                                                   149 

                   6.8.1   Description of the surveillance scenario                                       149 

                   6.8.2   Simulations based on the design values                                       153 

                   6.8.3   Power and Type II error probabilities for design value                153 

                   6.8.4   Time to crossing a boundary                                                        160 

                   6.8.5   Simulations for relative incidences other than  

                              design values                                                                                161 

                   6.8.6   True relative incidence = 1 ( 2RI 1= )                                           163 



 10 

                   6.8.7   True relative incidence 2RI  greater than 1 

                               but not equal to the RI                                                                 164 

6.8.8 Average year to signal from simulations with different 

design values                                                                                165 

           6.9   Conclusion                                                                                               165    

Chapter 7   Long-term surveillance using CUSUM chart with 

                    the self-controlled case series method                                                 168 

            7.1   Introduction                                                                                            168 

            7.2   Background on CUSUM                                                                        169 

            7.3   The CUSUM                                                                                           170 

            7.4   Determination of the limit h in a CUSUM                                             172 

            7.5   Two-sided tabular CUSUM                                                                    173 

            7.6   Use of the CUSUM for surveillance of adverse events                          174  

7.7 Simulation study evaluating the self-controlled case 

series CUSUM                                                                                        175 

7.7.1   Simulation scenario                                                                     175 

7.7.2   Average run length in control and out of control 

           for one vaccine                                                                            176 

7.7.3 Average run length of a CUSUM in control and  

out of control for five vaccines: If one signals, 

correct and reset all                                                                     179 

                    7.7.4   Average run length of a CUSUM in control and  

                               out of control for 5 vaccines: If one signals, correct 

 

Contents   



 11 

                               and reset only the signalling vaccine                                           183 

            7.8   Conclusion                                                                                              185 

Chapter 8   Oral vaccines and intussusception                                                      189 

            8.1   Introduction                                                                                            189 

            8.2   Background and rationale                                                                       189 

            8.3   Objectives and design of the study                                                         193 

            8.4   The study                                                                                                194 

                     8.4.1   Study cohort and conduct of study                                             194 

                     8.4.2   Case finding                                                                                195 

                     8.4.3   Data collection                                                                            196 

           8.5   Descriptive analyses of the GSK204 data                                               196 

                   8.5.1   Distribution of cases by country                                                   197 

                   8.5.2   Sex and age at diagnosis                                                               198 

                   8.5.3   Number of doses of OPV received                                               199 

           8.6   Statistical analysis                                                                                   202 

           8.7   Conclusions                                                                                             204 

Chapter 9   Conclusions                                                                                           207     

 

Appendix 1                                                                                                                216                    

List of acronyms related to Tables                                                                             216 

Appendix 2                                                                                                                234   

List of acronyms                                                                                                         236  

Appendix 3 

List of published papers from thesis                                                                           238 

References                                                                                                                 239 



 12 

 

Tables and Figures 

 

Chapter 1 

  Table 1.1                                                                                                                     27 

Chapter 2 

Figure 2.1   Possible case series configuration                                                            32 

 Figure 2.2   First and second order bias varying with the 

                     ratio of risk period to observation period                                                42 

Figure 2.3   First and second order asymptotic bias varying  

                   with relative incidence                                                                               44 

Figure 2.4   Asymptotic variance to first and second order  

                   varying with ratio of risk period to the observation  

                    period                                                                                                        50 

Figure 2.5   First and second order variance varying 

                    with relative incidence                                                                              53 

Figure 2.6   Asymptotic mean square error as function of the ratio of risk 

                   period to the observation period                                                                56 

Figure 2.7   Asymptotic mean square error as a function of the relative incidence     57 

 

Chapter 3 

   Table 3.1   Simulation results from standard scenario                                              69 

   Table 3.2   Simulation results from standard scenario                                              70 

   Table 3.3   Simulation results for 1 day risk period                                                  75 

   Table 3.4   Simulation results for 5 days risk period                                                 76 



 13 

   Table 3.5   Simulation results for 10 days risk period                                             218 

   Table 3.6   Simulation results for 50 days risk period                                             219 

   Table 3.7   Simulation results for 100 days risk period                                           220 

   Table 3.8   Simulation results for 200 days risk period                                           221 

   Table 3.9   Simulation results from strong symmetric age effect                            222 

   Table 3.10   Simulation results from weak monotone increasing 

                       age effect                                                                                             223  

   Table 3.11   Simulation results from strong monotone increasing  

                       age effect                                                                                             224 

   Table 3.12   Simulation results from weak symmetric age effect                           225 

   Table 3.13   Simulation results from strong monotone increasing  

                      age effect                                                                                              226 

   Table3.14   Simulations for indefinite risk period with weak  

                      symmetric age effect, 250 days mean age at exposure 

                      with 100 days standard deviation                                                         227 

   Table 3.15   Simulations for indefinite risk period with weak  

                       symmetric age effect, 125 days mean age at exposure  

                       with 50 days standard deviation                                                          228 

   Table 3.16   Simulations for indefinite risk period with strong 

                       monotone increasing age effect 250 days mean 

                    age at exposure, with 100 days standard deviation                                229 

Table 3.17   Simulations for indefinite risk period with strong 

                    monotone increasing age effect, 125 days mean age 

                    at exposure, with 50 days standard deviation                                         230 

Table 3.18   Simulations for strong monotone increasing age  



 14 

                    effect and indefinite risk period                                                              231 

Table 3.19   Simulations for strong monotone increasing age  

                    effect and indefinite risk period                                                              232 

Table 3.20   Simulations for strong monotone increasing age 

                    effect and indefinite risk period                                                              233 

   Figure 3.1  Overview structure of the simulation study                                            64 

  Figure 3.2   The four types of age effect                                                                    65 

  Figure 3.3   Distribution of age at exposure                                                               66 

  Figure 3.4   Unusually peaked distributions of age at exposure                                 67 

  Figure 3.5   Relative (median) bias against median estimates four samples 

                     of 10, 20, 50, 100, 200, 500 and 1000 cases for true 

                     relative incidences of 0.5, 1, 1.5, 2, 5, and 10                                         71 

  Figure 3.6   Percentages of 90%, 95% and 99% confidence intervals 

                     that contained the true relative incidence of 0.5, 1, 1.5, 2, 

                     5, 10 for sample sizes of 10, 20, 50, 100, 200, 500, and 1000 

                     cases                                                                                                         73   

Figure 3.7   (a), (b), (c) Relative median bias for 10 000 samples of 20, 

                     100, and 500 cases at true relative incidences of 0.5, 1, 1.5, 

                     5 and 10                                                                                                   78 

  Figure 3.8   Relative median bias for 10 000 samples of 20 cases at true 

                     relative incidences of 1, 2, 5 with age effects for strong 

                     monotone, strong symmetric and weak monotone. The risk 

                     periods are 10 days, 25 days and 50 days                                                80 

  Figure 3.9   Relative median bias for 10 000 samples of 100 cases at true 

                     relative incidences of 1, 2, 5 with age effects for strong 



 15 

                     monotone, strong symmetric and weak monotone. The risk  

                     periods are 10 days, 25 days and 50 days                                                80 

 Figure 3.10  Relative Median bias for 10 000 samples of 599 cases at  

                     true relative incidences of 1, 2, 5 with age effects for strong 

                     monotone, and weak monotone. The risk period are 10 days, 

                     25 days and 50 days                                                                                 81     

  Figure 3.11   (a), (b), (c) Relative bias against relative incidence, for  

                        risk periods 10, 25, 50 days and two age effects, when the  

                        mean age at exposure is 250 days, standard deviation 50  

                        days (a), mean age at exposure is 125 days, standard 

                        deviation 100 days (b), and mean age at exposure is 250  

                         days and standard deviation 50 days (c)                                              84 

  Figure 3.12   Relative median bias for 10 000 samples of different  

                       exposed proportions such that 100 cases were exposed  

                       for the true relative incidences of 1, 2, 5 with age effects for  

                       strong monotone and weak symmetric age groups                               85 

  Figure 3.13   Relative bias for strong monotone increasing age effect                      87 

 

Chapter 4 

   Table 4.1   Empirical power for 80 per cent nominal value                                    103 

   Table 4.2   Empirical power for 90 per cent nominal value                                    104 

  Figure 4.1   Figure 4.1 Saw-toothed behaviour                                                        106 

Chapter 5 

   Table 5.1   Empirical power for 80 per cent nominal value                                    115     

   Table 5.2   Empirical power for 90 per cent nominal values                                  116 



 16 

   Table 5.3   Exposure and age effects used in the simulations                                 121 

   Table 5.4   Sample sizes and empirical powers for 80% nominal 

                     power                                                                                                     123 

   Table 5.5   Sample sizes and empirical powers for 90% nominal 

                     power                                                                                                     124 

Chapter 6 

   Table 6.1   Thresholds for the SPRT for different values ofα (false  

                      positive Type I error) and β (false negative Type I error)                   146  

   Table 6.2   Results from 2000 simulations of 10 year surveillance period 

                     with six months monitoring interval and one week risk period           157 

   Table 6.3   Results from 2000 simulations of 10 year surveillance period 

                     with six months monitoring interval and two weeks risk period          158 

   Table 6.4   Results from 2000 simulations of 10 year surveillance period  

                     With six months monitoring interval and one month risk period          159 

   Table 6.5   Results from 2000 simulations of 10 year surveillance period 

                     with six months monitoring interval and two weeks risk period          162  

  Figure 6.1   Example of three realizations with relative incidence 5, ratio 

                     of the risk period to the observation period 

                     
1

, 5, 0.01
6

= = = =r λ α β                                                                       152 

  Figure 6.2   Power (percent) by relative incidence risk period (1 week,  

                      2 weeks, 4 weeks) and baseline incidence 

                     (Poisson mean 5, 10, 20, 50)                                                                 155 

  Figure 6.3   Type II error (percent) by relative incidence, risk  

                      period (1 week, 2 weeks, 4 weeks) and baseline 

                      incidence (Poisson mean of 5, 10, 20, 50)                                            155 



 17 

  Figure 6.4   Proportions (percent) by relative incidence, risk 

                     period (1 week, 2 weeks, 4 weeks) and baseline 

                     incidence (Poisson mean of 5, 10, 20, 50)                                             156 

  Figure 6.5   Effects of risk period, relative incidence and baseline 

                     incidence of the number of cases on the surveillance 

                     system from 2000 simulation of 10 year period with 

                     6 months monitoring time interval when either boundaries 

                      were crossed                                                                                         160 

  Figure 6.6   Probability of crossing lower boundary                                                164   

 



 18 

 

Chapter 7 

   Table 7.1   Average run length for one vaccine in and out of control                     178            

   Table 7.2   CUSUM chart monitoring possible 5 vaccines with one vaccine 

    Out of control                                                                                                        182  

   Table 7.3   Average run length for in and out of control for 5 vaccines                 184 

  Figure 7.1   Average run length of a CUSUM in and out of control with 1  

                     vaccine under surveillance                                                                    179 

  Figure 7.2   CUSUM chart monitoring possible 5 vaccines with one  

                     vaccine out of control                                                                            180 

  Figure 7.3   Average run length of a CUSUM in and out of control 

                     with 5 vaccines under surveillance                                                        182 

  Figure 7.4   CUSUM chart monitoring possible 5 vaccines resetting  

                     Only the vaccine out of control                                                             183   

 



 19 

 

 

Chapter 8    

   Table 8.1   Distribution of cases by country                                                            197 

   Table 8.2   Distribution of age at diagnosis by gender                                            198 

   Table 8.3   Distribution of number of individuals who received 

                     OPV doses in the 204 data set                                                               199 

   Table 8.4   Distribution of age at vaccination                                                         200 

   Table 8.5   Distribution of interval between vaccination and  

                     Diagnosis of intussusception                                                                 202 

   Table 8.6   Relative incidence and number of events in risk periods 

                    After vaccination for each dose and 95% confidence intervals            204 

  Figure 8.1   Distribution of age at diagnosis                                                            199 

  Figure 8.2   Distribution of age at vaccination                                                         201 

  Figure 8.3   Distribution of age at vaccination continued                                        201      



 20 

Chapter 1 

 

Introduction, background and literature review 

 

1.1 Introduction 

 

Research has traditionally been classified into two types: pure and applied. Philips et 

al [1] have considered a threefold classification of research: exploratory, testing-out 

and problem-solving, which applies to both quantitative and qualitative research.  

 

Exploratory research is said to be the type of research that involves tackling a new 

problem/issue/topic about which little is known, so the research idea cannot at the 

beginning be formulated very well. The problem may come from any part of the 

discipline; it may be a theoretical research puzzle or have an empirical basis. In this 

type of research, a researcher will need to examine what theories and concepts are 

appropriate, developing new ones if necessary, and whether existing methodologies 

can be used. Exploratory research involves pushing out the frontiers of knowledge in 

the hope that something useful will be discovered.  

 

Philips et al describe testing-out research as the type of research in which a researcher 

is trying to find the limits of previously proposed generalisations. In this type of 

research, one might ask questions such as: Does the theory of previously proposed 

generalisation apply in different situations? Can the theory apply in new technology? 

Under what circumstances does the theory fail? What bits of the theory might need 

extending? In this type of research, all sorts of questions can be tested, the amount of 
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testing out to be done is endless and continuous. By doing this, in the process the 

researcher will be able to improve previously proposed theories or generalisations by 

specifying, modifying, extending and clarifying. 

 

As for problem-solving research, the research starts from a particular problem in the 

real world, and bring together all the intellectual resources that can be brought to bear 

on its solution. The problem has to be defined and the method of solution has to be 

discovered. The person working in this research may have to create and identify 

original problem solutions every step of the way. This will usually involve a variety of 

theories and methods, often ranging across more than one discipline since real-world 

problems are likely to be ‘messy’ and not soluble within the narrow confines of an 

academic discipline. 

 

With respect to the Philips et al research classification, this thesis can be described as 

one of testing-out research, with some elements of problem-solving, as applied to a 

statistical method in epidemiology called the self-controlled case series method. We 

will begin by first describing what this method is, its advantages and limitations, its 

application, and the aims of the thesis. 

  

1.2 Background 

 

The self-controlled case series method (SCCSM), or case series method for short is a 

modified cohort method for estimating the relative incidence of specified events in a 

defined period after a point exposure. While the method was originally developed to 

investigate associations between vaccination and acute adverse events [2, 3], it has 
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subsequently been applied in other settings for example in pharmacoepidemiology 

(Hubbard et al [4] and Hocine et al[5]). Becker et al [6] have independently derived 

and applied the case series method in other areas of epidemiology. A step-by-step 

account of the theory, applications, modelling issues are given by Whitaker et al [7]. 

The same paper by Whitaker et al describes how the method can be implemented in 

various statistical software packages. The case series method in its semiparametric 

form [8] can be applied to continuous exposures but in the thesis we shall consider 

point exposures only. 

 

1.3 Motivation 

 

The self-controlled case series model was developed in order to analyse vaccine 

safety record linkage data relating to measles, mumps and rubella (MMR) vaccination 

and aseptic meningitis [9, 10].  For this study, episodes of aseptic meningitis arising 

in children aged 1-2 years over a defined calendar time period were obtained from 

laboratory and hospital records. The age and calendar time window determined by the 

period of event ascertainment defines an observation period for each child. From now 

onwards, the term ‘case’ refers to an individual who has experienced one or more 

events of interest over his or her observation period. Vaccination records were linked 

to cases resulting in a combined data set that consisted of cases and their exposures. 

The difficulty with such data sets is that usually they do not comprise accurate 

denominators. Furthermore, it may not be wholly clear from what population the 

cases arise and most likely the catchment areas of the hospitals from which the cases 

were obtained may not be clearly defined. Thus using methods such as cohort and 

case-control studies which are population based methods would require ingenuity, 
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especially since vaccine coverage in the population is unlikely to be uniform. If 

answers are required quickly about a possible association between an event of interest 

with the vaccine exposure, employing a cohort study may not be a good idea as it may 

take a long time, it would be very expensive to undertake and would require a large 

sample size. The self-controlled case series method was developed to deal with such 

difficulties. In the MMR and convulsions data set, a positive association between 

vaccination with the Urabe mumps strain and aseptic meningitis in the period 15-35 

days post-vaccination was confirmed, and the composition of MMR vaccines used in 

the UK was changed [9, 10]. 

 

The self-controlled case series method will be described in technical terms in chapter 

2. Briefly, a retrospective Poisson cohort model is specified, and the case series model 

is derived from this by conditioning on the total number of events experienced by 

each individual in the observation period. 

 

1.4 Advantages and limitations 

 

The following are the main advantages of the self-controlled case series method. The 

method uses cases only and provides consistent estimates (as the number of cases 

becomes large) of the relative incidence. It controls implicitly for all fixed 

multiplicative confounders, that is, confounders that act multiplicatively on the 

baseline rates and do not vary (or not vary much) with time over the observation 

period, such as variables relating to genetics, location, socio-economic status, gender, 

individual frailty, severity of underlying disease, etc. Age or temporal variation in the 

baseline incidence is controlled for in the model. Further under certain circumstances, 
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the method has high efficiency relative to the retrospective cohort method from which 

it is derived by conditioning [2]. Assembling the required data is much more likely to 

be easier in self-controlled case series method than cohort or case-control studies.  

 

Like any other method, the self-controlled case series method has limitations which 

we now give. The most restrictive limitation is that the method requires that the 

probability of exposure is not affected by the prior occurrence of an outcome; 

sometimes this condition may not be fulfilled. For non-recurrent events, the method 

works only when the event risk is small over the observation period. The method does 

not produce estimates of absolute incidence, only estimates of relative incidence. A 

further assumption is that the observation period is independent of the timing of 

events. A less severe limitation of the method is that it requires variability in the time 

or age of the event: if all events were to happen at exactly the same age, which is very 

unlikely but not impossible, then the method would fail.  

 

1.5 Why use the self-controlled case series method 

 

Investigations of suspected or hypothesised associations of adverse outcomes with 

transient exposures, such as vaccination, usually require epidemiological studies such 

as cohort studies and case control studies.  A disadvantage of a cohort study is that for 

rare events it has to be very large to achieve sufficient power. This may not be 

practical and can be very expensive. Sometimes researchers have got round this 

problem by reconstructing large retrospective cohorts (Ray et al [11] ) using data sets 

assembled for other purposes. Case control studies require smaller sample sizes. The 

main disadvantages with case control studies is that they are more prone to selection 
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bias, recall bias, and ascertainment bias (Altman [12]).  Confounding by variables 

related both to avoidance of vaccination and to the outcome of interest is a major 

problem for both cohort and case-control studies as noted by Farrington et al [3]. For 

example Fine et al [13] found that parental education, ethnic group, age of the mother, 

maternal smoking, birth weight, evolving neurological disorders, and conditions 

predisposing to seizures are related to both vaccination and to sudden infant death 

syndrome or encephalopathy and hence may be confounding factors. Both the cohort 

method and case-control method are data-intensive, involving large cohorts or careful 

selection and matching of controls [14]. The self-controlled case series method aspires 

to control for fixed confounders by using cases only. This helps to reduce the data 

collection effort, and concentrates it on the cases. 

 

Observations of clustering or troughs of events shortly after exposure leads to 

speculation about associations with exposure. There are several methodological 

difficulties involved in carrying out epidemiological studies to monitor such 

associations. Such studies are prone to many biases, for example, Fine et al [13] found 

that there is often differential ascertainment of cases in recently vaccinated and 

unvaccinated individuals and differential vaccination rates in individuals at higher or 

lower risk. Both would lead to bias in cohort and case control studies, whereas case 

series studies may escape bias from the latter. The cohort method is based on 

comparisons of incidence rates for person-time aggregated both across and within 

individuals. But the self-controlled case series method removes the contribution of 

comparisons between individuals, focussing attention on event rates in different 

periods within each individual’s observation time (Farrington et al [3]). For this 

reason, individuals who experience no events contribute no information about the 
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association between vaccination and outcome. Such individuals can be ignored 

without introducing any bias. On the other hand individuals who experience one or 

more events do contribute information on the risk period and age group in which the 

events occurred. The self-controlled case series method thus combines aspects of the 

case control and cohort methods, using retrospectively ascertained vaccination 

histories in cases to estimate the relative incidence in different intervals after 

vaccination relative to a control period. 

 

1.6 Other case-only methods 

  

Looking at cases only to detect risk factors for diseases is not new. Various studies 

have been conducted in which cases only are used, for example, a Markov chain 

method using cases only was used by Aalen et al [15] and a similar method modified 

as survival analysis was used by Prentice, et al [16]. However, it has been argued [2, 

8] that the methods of Aalen et al and Prentice et al give a valid test for no association 

but do not yield readily interpretable effect estimates. Another use of cases only can 

be seen in the case-crossover model developed by Maclure [17]. Maclure’s method 

resembles a case-control method with referents selected from the case’s own history. 

It has been argued [18] that although the case-crossover method is self-matched, it 

only yields consistent estimates when the distribution of exposure in case and control 

time intervals is exchangeable, in particular implying stationarity of exposures. There 

are several variants of this method, reviewed by Greenland [19], and the case-

crossover approach has been used in many settings [20]. Another method in which 

cases only are used is that of Feldmann [21]. In this method, a constant base-line 

incidence is assumed. Feldmann’s method does give consistent estimates, though it is 
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only approximately self-matched for rare events. The earlier approaches of using 

cases only have characteristics which the self-controlled case series method 

incorporates, in particular, it coincides with Feldmann’s method when the disease is 

rare and the base-line incidence is constant. The self-controlled case series method is 

similar to Prentice’s in that it also controls for age, it is similar to Maclure’s in that it 

also controls for fixed confounders. The main difference between the case series 

method and the method of Maclure is that it is derived from the same statistical model 

as a cohort study design, and hence can handle non-exchangeable exposures and in 

particular controls for age effects. Furthermore in this method one does not need to 

specify the prior probabilities for exposure as required in some other case-crossover 

designs (Marshall et al [22]). Smeeth et al [14] describe the advantages and 

disadvantages of case-control and case-only study designs.  

 

1.7 Where the self-controlled case series method has been used.  

 

This method has been used in various situations, but the main area it has been used is 

in modelling adverse events in vaccine studies. Table 1.1 below is adapted from 

Whitaker et al [7] which documents published applications of the case series method. 

A review of applications to vaccine safety is given by Andrews [23] and also by 

Farrington [24]. Independently, Navidi [25] proposed what is essentially a case series 

method, with time-varying exposures, for application in studies of air pollution. This 

method is described as a bi-directional or ambidirectional case-crossover method. The 

case series version of this method is that in which the entire observation period is used 

as controls. A similar approach has also been discussed by Lumley and Levy [26]. 
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Farrington and Whitaker [8] describe a generalisation of this approach, in which 

residual seasonality is controlled. 

Table 1.1 Studies using the case series method  
Exposure Outcome Reference 

DTP vaccine 
MMR vaccine 
MMR vaccine 
MMR vaccine 
MMR vaccine 
MMR vaccine 
MMR vaccine 
Influenza vaccine 
Influenza vaccine 
Oral polio vaccine 
Oral rotavirus vaccine 
DTP, MMR, HBV, HIB, 
OPV vaccine 
Antidepressants 
Antidepressants 
Long-haul air travel 
Influenza vaccine 
Common vaccines and infections 

Febrile convulsion 
Febrile convulsion 
Idiopathic thrombo-cytopenic purpura 
Aseptic meningitis 
Autism 
Invasive bacterial infection 
Gait disturbance 
Asthma 
Bell’s palsy 
Intussusception 
Intussusception 
 
Wheezing 
Hip fracture 
Myocardial infarction 
Venous thromboembolism 
Any medical visits 
Myocardial infarction and stroke 

[9] 
[9] 
[9, 27] 
[9, 28] 
[29, 30] 
[31] 
[32] 
[33, 34] 
[35] 
[36, 37] 
[38]  
 
[39] 
[4] 
[40] 
[6] 
[41] 
[42] 

DTP=diphtheria, tetanus, pertusis 
MMR=measles, mumps, rubella 
HBV=hepatitis B vaccine, HIB=haemophilias influenza type B 
OPV=oral polio vaccine 
 
 

A comparative evaluation of the self-controlled case series method has been 

undertaken by Farrington et al [3] and also by Glanz et al [43]. In Farrington et al’s 

comparisons, estimates of the relative incidence of febrile convulsions associated with 

Measles Mumps and Rubella (MMR) vaccine were obtained using the case series 

method, the case-control method and the cohort method. Theoretical arguments about 

the efficiency of the self-control case series method were presented. Overall the 

findings were that the self-controlled case series method produced results similar to 

the cohort method, whereas the 1-1 matched case-control estimates had wider 

confidence intervals reflecting the lower power of the method for a given number of 

cases. In conclusion Farrington et al [3] noted that the cohort study remains the 
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“ideal” design for the study of adverse reaction to vaccines, and should be used 

whenever feasible. However, for studies of rare adverse events or for routine 

surveillance purposes, large-scale cohort studies may be costly, impractical, or prone 

to confounding. In such circumstances, the case series method provides a powerful 

and practical alternative to cohort and case-control studies. 

 

1.8 Issues to explore and outline of the thesis 

 

The self-controlled case series method is relatively new, and some statisticians and 

epidemiologists are naturally sceptical. This scepticism is a barrier to its use, in spite 

of its benefits such as good power, reduced confounding and practicability. Testing-

out and extension of the method will hopefully contribute to a better understanding of 

the method amongst the epidemiological community as a whole, including the 

pharmaceutical industry. In this thesis the following issues will be explored: 

• Further statistical properties of the method 

• Evaluation of its small sample performance 

• Improvement in the design of self-controlled case series studies by obtaining 

and validating sample size formulae 

• Extending the method’s application to prospective surveillance 

 

We now give the outline of the thesis. In chapter two, we present the case series 

method, and derive some expressions of its theoretical properties. The case series 

method involves fitting a particular log-linear model using maximum likelihood. 

Thus, the asymptotic performance of the method is guaranteed by statistical theory. 

Expressions for the asymptotic bias, variance, and the asymptotic mean square error 
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of the estimate of relative incidence are derived. A graphical study of the bias, 

variance and asymptotic mean square error are given. In chapter three we present 

extensive simulations to study the validity of asymptotic results in finite samples 

under different situations. We describe how the simulations were carried out. Results 

from the simulations are given starting with what we call the standard scenario with 

varying number of cases and a range of true relative incidences. We then explore 

different risk periods, the effect of age, and different distributions of age at exposure. 

We also investigate indefinite risk periods and the presence of unexposed cases. We 

explore the effects of age using several contrasting scenarios.  

 

Chapters 4 and 5 concern the estimation of sample sizes for case series studies.  So far 

little work has been done on the design of self-controlled case series studies. Sample 

size formulae are developed and validated using simulations. The impact of age 

effects on power and sample size are studied. In Chapter 4, we study an earlier 

published sample-size formula [3]. We find that this formula is not accurate, and 

investigate several alternative approaches. In Chapter 5, we extend one successful 

approach to take account of the effect of age ( Musonda et al [44]). 

 

Chapters 6 and 7 relate to applying the self-controlled case series method in a 

prospective surveillance context. The issue of interest is how to apply the self-

controlled case series method, which is a retrospective method, in a prospective way 

so that possible adverse outcomes with a new vaccine (or several vaccines in routine 

use) can be detected early so that remedial action can be taken. This constitutes a new 

application of the case series method. Following Wald [45] and Page [46] we use the 

sequential probability ratio test (SPRT) and cumulative sum (CUSUM) based on the 
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self-controlled case series method so as to apply the self-controlled case series method 

in a prospective situation. These approaches along with extensive simulations to 

demonstrate their performance under different situations are presented. 

 

In chapter 8 we analyse a data set on oral polio vaccine and intussusception, provided 

to us by GlaxoSmithKline Biologicals (Belgium). This study was undertaken in 

preparation for field trials of a new oral rotavirus vaccine. These data require some 

ingenuity in how one applies the self-controlled case series method owing to 

censoring of exposure histories. We describe how to analyse such data. We go on to 

discuss how the findings of the thesis throw light on the results, and how they may 

inform the design of future studies and surveillance programmes based on the case 

series method. 

 

The conclusions of the thesis and its contribution to knowledge about the self-

controlled case series method are presented in chapter 9. 
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Chapter 2 

 

The self-controlled case series model 

 

2.1 Introduction 

 

In this chapter we introduce some notation, present the self-controlled case series 

model and derive some of its large sample properties in a simple setting. We present 

the likelihood in section 2.2.  In section 2.3 we study the asymptotic bias of the 

relative incidence estimator. In section 2.4 we present a graphical study of the 

asymptotic bias. The asymptotic variance of the estimator is derived in section 2.5. In 

section 2.6 we present a graphical study of the variance. We derive the asymptotic 

mean square error (AMSE) of the relative incidence estimator in section 2.7 and 

present a graphical study of AMSE in section 2.8. We conclude the chapter with a 

brief discussion in section 2.9. 

  

2.2 The self-controlled case series model 

 

The self-controlled case series method is a conditional cohort method for estimating 

the relative incidence of specified events in a defined period after a point exposure. In 

this method, first an observation period is defined. Time within the observation period 

is classified as at risk or as control time in relation to point exposures that are 

regarded as fixed. We then condition on the number of events experienced by each 

individual over the observation period. As mentioned in chapter one, the method 
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allows valid inference about the relative incidence of events in risk periods relative to 

the control period, using data on cases only.  

 

We now derive the general form of the likelihood of the self-controlled case series 

model. The pictorial configuration (Figure 2.1) below will help to understand the 

general form of the likelihood described.  

 

 

 

Figure 2.1 Possible case series configuration  

In Figure 2.1 we see a possible configuration in which an observation period ( ],i ia b  is 

defined within which an individual i  was exposed (vaccinated) and a risk period (red 

line) is defined shortly after the exposure. It is possible to have several risk periods 

depending on prior knowledge of what time intervals are important. For example 

Griffin et al [47] assumed that the effect of DTP on febrile convulsions or 

encephalopathy had risk periods of 0-3, 4-7, 8-14, and 15-29 days after any dose of 

DTP. The observation period is further divided in age groups; in Figure 2.1 there are 

 Control  
Period 
k=0 

Risk 
Period 
k=1 

Age group 1 (j=0) Age group 2 (j=1) 

Vaccinated at this point 
within observation period 

Event diagnosed at 
this point within 
observation period 

ib  

Control period k=0 

ia  
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two age groups. As with risk periods, it is possible to define several age groups. The 

period outside the risk period is known as the control period. In Figure 2.1 it 

comprises of the period before vaccination, a period shortly after vaccination, and a 

period after the risk period. The event in this case was diagnosed some time after the 

risk period in age group 2, but could have occurred anywhere within the observation 

period. The observation period and the location of the risk period within it will 

generally vary between individuals.  

 

In general, we assume that events arise within individuals as a non-homogeneous, 

age-dependent Poisson process. In what follows, a proportional incidence model is 

used to describe the relation between vaccination and the outcome of interest 

(Farrington et al [3]).  

 

Let individuals be indexed by 1,2,...,i N= , age groups be indexed by 0,1,..., 1j J= −  

(0 denoting the reference age group) and the risk periods be indexed by 

0,1,..., 1k K= −  (0 denoting the control period).  

 

 Further suppose we let the symbols , ,ijk ijk ijke nλ  respectively denote incidence, length 

of time at risk, and number of events experienced by an individual i , in age group j  

and risk period k  during the observation period ( ],i ia b . The log-linear model [3]  

ln( )=  ijk i j kλ φ α β+ +  

is used to parameterise the incidence of an event for an individual effect iφ , age effect 

 jα , and exposure effect kβ  (with 0 0 0α β= = ) . Thus the incidence function during 

the baseline period is simply 00 exp( )i iλ φ= . The Poisson probability model is given 
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by: Pr[ ]  where 0,1, 2,...
!

re
r r

r

λ λ− ×= =  and for the underlying cohort model, 

Poisson( )ijk ijk ijkn eλ ×� . 

For the cohort model, γT
i ixφ =  for fixed covariates ,ix and the Poisson log-likelihood 

kernel (which is equal to the log-likelihood up to an additive constant) is   

( )co , , ( γ ) exp( γ ) .T T
ijk i j k i j k ijk

i jk i jk

n x x eα β γ α β α β= + + − + +∑∑ ∑∑l  

The self-controlled case series model is derived from the cohort model with the iφ  

unrestricted by conditioning on the ..,in (the total number of events experienced), thus 

giving a product multinomial distribution as described by McCullagh and Nelder [48]. 

So the log-likelihood kernel for the self-controlled case series model is 

( ) exp( )
, log . 

exp( )
j k ijk

ijk
i jk r s irs

rs

e
n

e

α β
α β

α β

⎛ ⎞+⎜ ⎟= ⎜ ⎟+⎜ ⎟
⎝ ⎠

∑∑ ∑
l  

We can see from above that the individual effects T
i ixφ γ=  cancel out. This is because 

incidence rates are contrasted within the same individual’s person-time, so that, in this 

sense, the method is self-controlled. Thus, provided the model is correct, inferences 

from a case series analysis cannot be confounded by fixed multiplicative individual 

effects, which might include genetic factors, location, socio-economic status, sex, 

underlying health status, individual frailty, and so on [7]. Individual effects can 

nonetheless modify the exposure effect but this can be modelled by including suitable 

interaction terms. Note that self-control applies to fixed covariates only and not age or 

time-dependent covariates. 

 

In much of what follows we shall only need the log likelihood in the following 

simplified situation.  We suppose that there are no age effects, and that all individuals 
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are observed over the same observation period, comprising two adjacent periods of 

duration 1e (the risk period) and 0e  (the control period). Suppose that all individuals 

are vaccinated at the start of period 1e and subsequently at increased risk during this 

period. Suppose that in a sample of n  events, 0n  occur in period 0e  and 1n  in 

period 1e  with 0 1n n n= + . Let the ratio of the risk period to the observation period 

be r , that is, 1

0 1

=
+
e

r
e e

. Usually the risk period and the observation period will be 

specified in advance. However, only their ratio r  is required. Let ρ be the relative 

incidence eβ ( so that log( )=β ρ ). 

  

In this simple situation the log-likelihood kernel is equal to:  

1 1 0( ) log( )= − +l n n e e eββ β  

Note that this is the same log-likelihood kernel as for the binomial model 

( )1 ,n B n p�  

with  

           1

1 0

.
e e

p
e e e

β

β=
+

 

The maximum likelihood estimator β̂  of β  is obtained by setting 0
∂ =
∂
l

β
, that is , 

1
1

1 0

0
∂ = − =
∂ +
l e e

n n
e e e

β

ββ
  

giving 

1 1

0 0

/ˆ log
/

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

n e

n e
β  and 

ˆ 1 1

0 0

/
ˆ .

/

n e
e

n e
βρ = =  
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The likelihood ratio statistic for the test of 0 : 0=H β  for this simplified situation is 

then ( ) ( ) ( ) ( ){ }ˆ

1 1 0 1 0
ˆ ˆ2 0 2 log log ,D n n e e e e eββ β⎡ ⎤⎡ ⎤= − = − + − +⎢ ⎥⎣ ⎦ ⎣ ⎦

l l  

where β̂  is the maximum likelihood estimator. 

 

2.3 Derivation of the bias of the estimator β̂   

 

 In this section we derive an expression of the asymptotic bias up to the second order 

of the estimator of the relative incidence in the simple situation described in the 

previous section when there are no age effects and all individuals have the same 

observation period. The maximum likelihood estimator may be written as 

01

1 1

ˆ log log .
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

en

n n e
β  

Let the function 0

1

( ) log log
⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

ex
f x

n x e
 

This is equivalent to: 

( ) ( ) 1
( ) log log log

r
f x x n x

r

−⎛ ⎞= − − + ⎜ ⎟
⎝ ⎠

, where 1

0 1

e
r

e e
=

+
. 

 The random variable X  is the number of events occurring in the risk period. This 

follows a binomial distribution 

 ( ),X Binomial n p�  

where ( )
1

0 1

.
1

e r
p

e e r r

ρ ρ
ρ ρ

= =
+ − +

 

It follows that the expectation of X  is ( )E X npµ= =  and ( ) log( ) .= =f µ ρ β  

By Taylor expansion of ( )ˆ ≡ f Xβ about µ , we get: 
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( ) ( ) ( )

( )

2 3

4

1 1ˆ ( ) ( ) ( ) ( )
2 6

1
      ( ) residue                                                                       (2.1)

24

′ ′′ ′′′= + − + − + −

+ − +iv

f X f X f X f

X f

β µ µ µ µ µ µ µ

µ µ
 

Taking expectations of the above expression, we have: 

( ) ( ) ( )3 41 1 1ˆ var( ) ( ) ( ) ( ) residue.
2 6 24

′′ ′′′= + + − + − +ivE X f E X f E X fβ β µ µ µ µ µ  

Now we have: 

 

 
1 1 1

( ) ,  so ( )
( )

n
f x f

x n x x n x npq
µ′ ′= + = =

− −
with 1q p= − ; 

 

2 2

2 2 2 2 2 2 2

1 1 ( ) 1
( ) ,  so ( )

( ) ( )

x n x p q
f x f

x n x x n x n p q
µ ⎡ ⎤− − − −′′ ′′= + = = ⎢ ⎥− − ⎣ ⎦

; 

 

3 3 3 3

3 3 3 3 3 3 3

2 2 ( ) 2
( ) 2 ,  so ( )

( ) ( )

x n x p q
f x f

x n x x n x n p q
µ ⎡ ⎤+ − +′′′ ′′′= + = = ⎢ ⎥− − ⎣ ⎦

; 

 

( ) ( )2 24 4 4 4

4 4 4 4 4 4 4 4 4 4

3 3 ( ) 6 6
( ) 2 6 ,  so ( ) .

( ) ( )
iv iv

p q p qx n x p q
f x f

x n x x n x n p q n p q
µ

− +⎡ ⎤ ⎡ ⎤⎡ ⎤− − − −= + = = =⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

We know that for a binomial, (Johnson et al [49]), the variance, the third and fourth 

moment about the mean are: [ ],  ( ),  and 1 3 ( 2)npq npq q p npq pq n− + −  respectively. 

Moments of higher order contribute terms that are ( )3−O n  at most. Replacing these 

values in (2.1) above and only considering terms of order up to 2( )O n− we have: 

( ) ( )( )2 23 3 2 2 2
3

2 2 2 3 3 3 4 4 4

1 ( ) 2 3 6ˆ ( )
2 6 24

p q p qnpq p q npq q p p q n p q
E O n

n p q n p q n p q
β β −

− +⎡ ⎤⎡ ⎤− − += + + + +⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Simplifying, we get the asymptotic bias of β  up to second order in terms of  and p q  

as given below: 

( ) ( ) ( ) ( ) ( )3 3

2 2 3
2 2 2

1 1 3ˆ ( )                    (2.2)
2 4 3

−
⎡ ⎤+− −
⎢ ⎥− = + + − +
⎢ ⎥⎣ ⎦

p qp q p q
E p q O n

n pq n p q
β β

 

For interpretation purposes, we substitute 

( ) ( ) ( )
3 3 2 2 2 2

1
,   ,

1 1 1

and note that ( )( ) ( )

r e r r
p q

r r r e r r e r

p q p q p pq q p pq q

β

β β
ρ

ρ
−= = =

− + − + − +

+ = + − + = − +

 

thus  

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )2 2 3
22 2

1 1 1ˆ (1 )
2 1

11
                  (1 ) 5 4 1 5 1 ( )  (2.3)

12 1

E re r
n r re

re r
re r re re r r O n

n re r

β
β

β
β β β

β

β β

−

⎛ ⎞− = − − + +⎜ ⎟−⎝ ⎠

+ − ⎡ ⎤− − + − + − +⎢ ⎥⎣ ⎦−
 

 Note that in (2.3) above, the expression ( )1 1 1
(1 )

2 1
re r

n r re
β

β
⎛ ⎞− − +⎜ ⎟−⎝ ⎠

is the 

asymptotic bias up to the first order.  We can further factorise (2.3) above to get the 

following expression: 

( ) ( ) ( ) ( ) ( ) ( )2 2

3

1 1 1 1ˆ (1 ) 1 5 4 1 5 1
2 1 6 1

                  ( )                                                                                                

E re r re re r r
n r re n r re

O n

β β β
β ββ β

−

⎧ ⎫⎪ ⎪⎛ ⎞ ⎡ ⎤− = − − + + + − + −⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦− −⎝ ⎠ ⎪ ⎪⎩ ⎭
+                           (2.4)

 

We can see in (2.4) above that the expression 

( ) ( ) ( ) ( )2 21
1 5 4 1 5 1

6 1
re re r r

n r re
β β

β

⎧ ⎫⎪ ⎪⎡ ⎤+ + − + −⎨ ⎬⎢ ⎥⎣ ⎦−⎪ ⎪⎩ ⎭
 is always greater than 1. So the 

( )( ) ( )ˆsgn sgn (1 )⎡ ⎤ ⎡ ⎤− = − −⎣ ⎦⎣ ⎦E re rββ β  and 2nd order bias 1st order bias> . Both 

the first and second order asymptotic bias are zero when 1re rβ = − . This occurs when 
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the risk period is chosen such that the same (expected) number of cases occurs in the 

risk period as outside it. Further we note that the asymptotic bias is negative when 

1 r
e

r
β −<  and positive when

1 r
e

r
β −> .  

 

2.4 Graphical study of the asymptotic bias 

 

In this subsection, we explore the behaviour of the asymptotic bias (2.4) graphically. 

Note that an estimate with small bias and small variance is generally preferable to one 

with zero bias and large variance [50]. In addition to exploring the behaviour of the 

bias of β̂ , we shall later explore under what circumstances the estimator from the 

self-controlled case series method has small bias and small variance. Figure 2.2 (a), 

(b), … (f) below shows the asymptotic bias of the first and second order varying with 

the ratio of the risk period to the observation period at fixed relative incidence of 0.5, 

1, 2, 5 and 10. We present the asymptotic bias for n=10, 20, 50, 100 cases; 

asymptotically as n → ∞  the bias is zero (explored but results not shown) when there 

are a lot (n > 100) of cases.  
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Figure 2.2 First and second order asymptotic bias varying with the ratio of the risk 
period to the observation period. 
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Similarly Figure 2.3 (a), (b), (c) and (d) below shows the bias varying with relative 

incidence at fixed ratios of the risk period to the observation 0.1,0.2,0.5 and 0.9r = . 

We can see that the bias decreases as one would expect with increasing sample size. 

There is little difference between the first order bias and the second order bias except 

for small sample sizes (e.g, n=10). The asymptotic bias is greatest for small ratio of 

risk period to the observation period (ratio less than 0.1 Figure 2.2 (a), and (b)) and 

long ratio of risk period to observation period (ratio greater than 0.9, Figure 2.2 (d), 

(e), (f) ). Varying the relative incidence with fixed ratio of risk period to observation 

period (ratios 0.1, 0.2, 0.5, and 0.9) and fixed number of cases (n=10, 20, 50 and 100) 

there is an appreciable bias when the relative incidence is less than 1 and 0.5r ≤  

(Figure 2.3. (a), (b), (c)) and for large relative incidences when 0.9r =  (Figure 2.3 d).   
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Figure 2.3 First and second order asymptotic bias varying with relative incidence 

 

2.5 The asymptotic variance of β̂   

 

Farrington et al [3] found the variance of an estimator β̂  up to the first order in the 

simplified situation described in section 2.3. In this section, we extend the calculation 

up to the second order. The variance of β̂  up to the second order is derived as 

follows. 

Squaring both sides of (2.1) and simplifying, keeping powers up to order 4, we get: 

( ) ( ) ( )

( ) ( ) ( )

2 22 2

2
3 4

ˆ ( ) 2 ( ) ( ) ( ) ( ) ( )

( )1 ( ) ( ) ( ) ( )
    ( ) ( ) ( ) ( )

3 12 3 4

    residue

iv

f f X f X f f f

ff f f f
X f f f f X

β µ µ µ µ µ µ µ µ

µµ µ µ µµ µ µ µ µ µ

⎡ ⎤′ ′′ ′= + − + − + +⎣ ⎦
⎡ ⎤′′′ ′′′⎡ ⎤′′′ ′ ′′− + + − + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

+
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From above, we know ( )f µ β= . Substituting this value in the expression above we 

get:  

( ) ( ) ( )

( ) ( ) ( )

2 22 2

2
3 4

ˆ 2 ( ) ( ) ( )

( )1 ( ) ( ) ( )
       ( ) ( ) ( )  

3 12 3 4

        residue

iv

X f X f f

ff f f
X f f f X

β β β µ µ µ β µ µ

µβ µ µ µµ β µ µ µ µ

⎡ ⎤′ ′′ ′= + − + − + +⎣ ⎦
⎡ ⎤′′′ ′′′⎡ ⎤′′′ ′ ′′− + + − + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

+
Taking expectations of both sides: 

( ) ( )

( )

( ) ( )

22 2

3

2
4

ˆ var( ) ( ) ( )

1
            E ( ) ( ) ( )

3

( )( ) ( ) ( )
          residue

12 3 4

iv

E X f f

X f f f

ff f f
E X

β β β µ µ

µ β µ µ µ

µβ µ µ µµ

⎡ ⎤′′ ′= + + +⎣ ⎦
⎡ ⎤′′′ ′ ′′− +⎢ ⎥⎣ ⎦
⎡ ⎤′′′ ′′′

+ − + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

Substituting for the other values we have: 

( ) ( )
( )

( ) ( )

( )( ) ( )

3 3

2 2
22 2 2 3 3 3 2 2 2

22 2 3 3
2 2 2 3

4 4 4 3 3 3 4 4 4

1 1 1ˆ ( - )
3

6 2 1 1
              3 ( )

12 3 4

p qp q
E npq npq q p p q

n p q n p q npq n p qnpq

p q p q p qp q
n p q O n

n p q npq n p q n p q

β ββ β

β −

⎡ ⎤⎡ ⎤ +−
⎢ ⎥= + + + + −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤− + −+
⎢ ⎥+ × × + + +
⎢ ⎥⎣ ⎦

Simplifying the above expression we get: 

( ) ( ) ( ) ( ) ( ) ( )
( )

2

2 2 3 3 2 2
2 2 2 2 2 2

3 3

3
2 2 2

1 2 1 3ˆ
4 3 4

2
             ( ) 

p q p q p q
E p q p q

npq n p q n p q

p q
O n

n p q

β β
β β

−

+ − − − ⎡ ⎤= + − + − + + +⎢ ⎥⎣ ⎦

+
+ +

 

The asymptotic variance of β̂  is given by: 

( ) ( ) 2
2ˆ ˆ ˆvar  E Eβ β β⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦ . We know from above (2.2) that 

( ) ( ) ( ) ( ) ( )3 3

2 2 3
2 2 2

1 1 3ˆ ( )
2 4 3

p qp q p q
E p q O n

n pq n p q
β β −

⎡ ⎤+− −
⎢ ⎥= + + + − +
⎢ ⎥⎣ ⎦

. Squaring both 

sides: 
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( ) ( ) ( ) ( ) ( ) ( )2 3 3
2

2 2 2 3
2 2 2 2 2 2

2 3ˆ ( )
4 4 3

p qp q p q p q
E p q O n

n pq n p q n p q

β ββ β −
⎡ ⎤+− − −⎡ ⎤ ⎢ ⎥= + + + + − +⎣ ⎦ ⎢ ⎥⎣ ⎦

 

The asymptotic variance up to the second order is given by: 

( ) ( ) ( ) ( )

( ) ( )

2 3 3
2

2 3
2 2 2 2 2 2

2 2 2

3
2 2 2 2 2 2

21ˆ ˆ ˆvar ( )  
2

21
                                            ( ) 

2

p qp q
E E O n

npq n p q n p q

p pq qp q
O n

npq n p q n p q

β β β −

−

+−⎡ ⎤⎡ ⎤= − = − + +⎣ ⎦ ⎣ ⎦

− +−
= − + +

 

Substituting the full expressions for  and p q in the above we get: 

( ) ( ) ( )( )
( )

( )
( )

2

2

22 2

3
2

(1 ) 11 1 1 1ˆvar 1
1 2 1

12 1 1
            ( )                  (2.5) 

1 1

               

−

⎛ ⎞− − + −⎛ ⎞ ⎜ ⎟= + − + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
⎡ ⎤+ −⎛ ⎞ ⎛ ⎞+ − + −⎢ ⎥+ + + +⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

e r r e r r
e r r

n r e r n e r r

e r re r r e r r
O n

n r e r r e r

β β
β

β β

ββ β

β β

β

 

 

Note from (2.5) above, the expression ( )1 1 1
1

1
e r r

n r e r
β

β
⎛ ⎞+ − +⎜ ⎟−⎝ ⎠

is the first order 

variance as was found by Farrington et al [3]. Note further that (2.5) can be factorised 

to give (2.6) below:  

( ) ( )
( )

( ) ( ) ( )
( )

2 2 2

3
1 3 2 1 3 11ˆvar 1 ( )                          (2.6) 
1 2 1

e r r e r e r r r
O n

n e r r ne r r

β β β

β ββ −
⎡ ⎤+ − − − + −
⎢ ⎥= + +
⎢ ⎥− −
⎣ ⎦

 

We see that the expression  

( ) ( ) ( )
( )

2 2
3 2 1 3 1

1
2 1

e r e r r r

ne r r

β β

β

⎡ ⎤− − + −
⎢ ⎥+
⎢ ⎥−
⎣ ⎦

 is greater than 1, hence the second order 

variance is always greater than the first order variance. The asymptotic variance is 

minimised when 1e r rβ = − . This will be illustrated in the next section graphically. 
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2.6 Graphical study of the asymptotic variance of β̂  

 

 Figure 2.4 and Figure 2.5 below show how the asymptotic variance up to the first 

order and second order varies with the ratio of the risk period to the observation 

period and with the relative incidence at fixed sample sizes. Just as in the graphical 

study of the bias, we explored the behaviour of the asymptotic variance for 

10, 20,50,  and 100.n =  We fixed the relative incidences at 0.2, 0.5, 1, 2, 5 and 10 and 

then varied the ratio of the risk period to the observation period (Figure 2.4 (a), (b), 

(c), (d), (e) and (f)). We also fixed the ratio of the risk period to the observation period 

at 0.1, 0.2, 0.5, and 0.9 and varied the relative incidence (Figures 2.5 (a), (b), (c) and 

(d)). 
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Figure 2.4 Asymptotic variance to first and second order varying with the ratio of the 
risk period to the observation period. 
 

We note that in all graphs shown the first order variance was less than the second 

order variance as expected. However, there was little difference between the first 

order variance and the second order variance. As for the bias, the variance decreases 

with increasing sample sizes. The variance is largest for ratios of risk period to 

observation period that are less than 0.1 and greater than 0.9 (Figures 2.4 (a), (b), (c), 

(d), (e), and (f)). Varying the relative incidence and fixing the ratio of risk period to 

observation period, we obtain large variances for relative incidences less than 1 (see 

Figure 2.5 (a), (b), (c)). The asymptotic variance is also large when the ratio of the 

risk period to the observation period is high and the number of cases is small (n=10 

and 20 see Figure 2.5 (d)) but this effect disappears as the number of cases increase 

(n=50 and 100). The parameter values that give large asymptotic bias tend to be the 

same that give large asymptotic variance, and conversely the parameter values that 
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give small bias tend to give small variance (see Figure 2.2 compared to Figure 2.4, 

and Figure 2.3 compared to Figure 2.5).  
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Figure 2.5 First and second order variance varying with relative incidence 

 

2.7 Asymptotic mean square error (AMSE) 
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The asymptotic mean square error up to the second order is derived as shown below. 

Suppose β̂  is an estimator of β  with some bias, that is, ( )ˆE bβ β= +  where b is the 

bias. The variance of β̂  is ( ) ( ) 2
ˆ ˆ ˆvar E Eβ β β⎡ ⎤= −⎣ ⎦ . The quantity 

2ˆE β β⎡ ⎤−⎣ ⎦ is 

called the mean square error and can be written as 

( ) ( )2 22 2
2ˆ ˆ ˆ ˆ ˆ ˆ( )        (2.7)⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− = − + + = − + = − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E b b E E b E E bβ β β β β β β β  

( ) 2
ˆ ˆE Eβ β⎡ ⎤−⎣ ⎦ is simply the variance. Hence if we use the asymptotic variance up to 

the second order and the asymptotic bias up to the first order in (2.7) above for the 

simple situation described earlier we obtain the asymptotic mean square error 

(AMSE) as given in the formula below.  

( ) ( )

( )

( )
( )

( ) ( ) ( )

2 3
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Simplifying the above, the AMSE up to the second order is:  
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We can see that the expression 
( )2
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n e r r

β

β

+ −
−

is the variance up to the first order. We 

expect the graphical illustration of AMSE to be similar to that of the asymptotic 

variance, especially for those values where the bias is close to zero.  
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2.8 Graphical study of AMSE 

 

The AMSE varying with the ratio of the risk period to the observation at fixed relative 

incidences of 0.2, 0.5, 1, 2, 5 and 10 is represented in Figure 2.6 (a), (b) and (c). 

Similarly, Figure 2.7 (a) and (b) shows the AMSE varying with the relative incidence 

at fixed ratio of the risk period to the observation period with 0.1,0.2,0.5,0.9r = . 
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Figure 2.6 Asymptotic mean square error as a function of the ratio of risk period to 
the observation period. 
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Figure 2.7 Asymptotic mean square error as a function of the relative incidence 

 



 59 

As for the bias and variance the values of the AMSE were obtained for the sample 

sizes n=10, 20, 50, and 100. Just as for the asymptotic bias and variance, the AMSE 

decreases with increasing sample size. Comparing Figures 2.6 and 2.7 with those 

obtained for the asymptotic variance, we can see that the contribution of the bias is 

negligible in most situations.  

 

2.9 Conclusion 

 

In this chapter, we have described the self-controlled case series model and introduced 

the notation we will be working with from here onwards. The likelihood of the model 

was derived. The maximum likelihood estimator was obtained explicitly in a simple 

situation, for which the likelihood ratio statistic was also obtained. The asymptotic 

bias, variance and the AMSE of the estimator in the simplified scenario were 

calculated. We studied graphically how the asymptotic bias, variance, and the AMSE 

vary with the ratio of the risk period to the observation period and the relative 

incidence at fixed sample sizes.  

 

The main finding in this chapter is to characterise how the asymptotic bias, variance 

and AMSE vary. It is important to know under what situations the self-controlled case 

series method is going to yield biased and/or imprecise estimates. As illustrated, the 

bias is zero when there is same number of cases expected in the risk period as out of 

it. The asymptotic bias and the variance are large when the ratio or the risk period to 

observation period is less than 0.1 and when it is greater than 0.9. They are also large 

for relative incidences less than 1 and when the relative incidence is greater than 8. 

However outside these extremes, the asymptotic bias is close to zero and the 
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asymptotic variance is close to its minimum. In other words, the bias and variance do 

not depend sensitively on the parameters  and r β within their central range. 

 

Nevertheless, in many applications to vaccines, short risk periods are required and 

substantial bias can arise in such circumstances unless the relative incidence is high. 

Further investigation, based on simulation rather than asymptotic theory, is therefore 

required. A further limitation of our asymptotic results is that we have explored the 

model without taking age into account. Age is a well known confounder in adverse 

outcomes with respect to vaccines in which the self-controlled case series model is 

widely used. We did not take age into account because the calculation for the 

asymptotic bias, variance and the AMSE become unwieldy. We shall explore the 

effects of age at event, age at exposure, risk periods (fixed or indefinite) and small 

samples by simulation in the next chapter.  
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Chapter 3 
 
 

Performance of the self-controlled case series method: Simulation 
study 

 
 
3.1 Introduction. 
 
 
In previous chapters the theory behind the self-controlled case series method has been 

described and its properties outlined.  In chapter 2, the asymptotic variance and bias 

and asymptotic mean square error up to the second order were derived in a simplified 

scenario.  

 

The estimates obtained by the method are valid asymptotically by virtue of likelihood 

theory. What we now need is to explore the performance of the method in small 

samples and under different conditions. This chapter explores various simulations in 

which we generated data where the true population value of the relative incidence is 

known. We use the self-controlled case series model to analyse the simulated data and 

compare the estimate with the true value. The simulations were set up to mimic those 

scenarios that typically occur in studies of paediatric vaccines. 

 

In section 3.2 we describe how the simulations were carried out. The results from the 

simulations are given in section 3.3. We first present the results from what we call the 

standard scenario with varying number of cases and a range of true relative 

incidences. In subsequent subsections we vary the risk periods, the effect of age at 

event, and the distribution of age at exposure. We also investigate indefinite risk 

periods and the presence of unexposed cases. Results exploring the effects of age in 
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form of age groups labelled as strong symmetric, weak monotone increasing age 

effect and strong monotone increasing age effect are given. In all the simulations we 

obtain central estimates and the coverage probabilities for 90%, 95%, and 99% 

confidence intervals. Also given are the percentage of simulations for which the true 

value of β was below the lower 90%, 95%, 99% confidence limits, and the 

percentage for which the true value of β  was above the upper 90%, 95%, and 99% 

confidence limits. The conclusions of the chapter are given in section 3.4. To reduce 

clutter, most of the detailed results are given in an Appendix.  

 

3.2 The structure of the simulation study 

 

 Figure 3.1 shows the structure and stages of the simulation that were carried out.  For 

a given set of parameters (described below), sample size n and random seed, a set of n 

exposure times were generated, together with n marginal total numbers of events. 

These marginal totals are generated using a truncated Poisson distribution (excluding 

zero), conditionally on the exposure history. 

 

The exposures and marginal totals vary randomly between runs. However, in each run 

of 10,000 simulations, the exposures and marginal totals remain fixed. This is to 

mimic the fact that the case series method is conditional on exposures and marginal 

totals.  

 

Within a run of 10,000, the events for each individual are randomly reallocated  

10,000 times to the age/exposure categories within each individual’s person time. This 

is done according to the case series model, using a multinomial distribution. 
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The output from each run includes the median of the relative incidence estimates. We 

also quote the median of their logarithms. The median is chosen rather than the mean, 

since in finite samples there is a non-zero probability that the estimated log relative 

incidence is ±∞ and hence its expectation does not exist. The median, compared to the 

true value, provides an appropriate measure of central tendency of the finite sample 

bias. Note that all runs are based on 10,000 independent samples. With this run size, 

the Monte Carlo standard error for the coverage probability of a 95% confidence 

interval is about 0.002 (or 0.2 %, see chapter 4 page 101 for how it is calculated).  

 

3.2.1 The parameters  

 

Each simulation requires the following parameters to be specified. 

• Observation period, always taken to be 500 days 

• Risk period following exposure (described in section 3.2.4) 

•  Relative incidence: the true relative incidence took values 0.5, 1, 1.5, 2, 5, 10  

• Exposure distribution (section 3.2.3) 

• Age groups and age-specific relative incidences (section 3.2.2, Figure 3.2 

below) 

• Baseline rate always taken to be 72 10φ −= × per day, or one per hundred 

thousand over 500-day observation period. Thus the event is assumed to be 

rare, and with high probability, a case has only a single event. 

• Sample size: we did simulations with 10, 20, 50, 100, 200, 500, 1000 cases 
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3.2.2 Age at the event 

 

In most case series analyses, one needs to control for age. We varied the effect of age 

on the event incidence according to practically realistic scenarios. Thus we explored 

the self-controlled case series model’s performance in the presence of what we call 

weak symmetric, strong symmetric, weak monotone increasing, and strong monotone 

increasing age effects. These are defined as follows.  

• Weak symmetric age effect. Age groups (in days, with age associated relative 

incidence in brackets) are: 1-100 (1), 101-200 (1.2), 201-300 (1.5), 301-400 

(1.2), and 401-500 (1). 

•  Strong symmetric age effect. Age groups (in days, with age associated 

relative incidence in brackets) are: 1-50 (1), 51-100 (2), 101-150 (3), 151-200 

(4), 201-250 (5), 251-300 (5), 301-350 (4), 351-400 (3), and 401-500 (1). 

• Weak monotone increasing age effect. Age groups (in days, with age 

associated relative incidence in brackets) are: 1-100 (1), 101-200 (1.1), 201-

300 (1.2), 301-400 (1.3), 401-500 (1.4) 

• Strong monotone increasing age effect. Age groups (in days, with age 

associated relative incidence in brackets) are: 1-50 (1), 51-100 (1.5), 101-150 

(2), 151-200 (2.5), 201-250 (3), 251-300 (3.5), 301-350 (4), 351-400 (5), 451-

500 (5.5).  

 

Figure 3.2 below shows bar charts representing each of these four choices.  
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Figure 3.1 Overview structure of the simulation study. 
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Figure 3.2 The four types of age effect. 
 

3.2.3 Exposure distribution 

 

The precision of the relative incidence estimator depends on the extent of between 

individual variation in exposure. We used a beta distribution on [ ]0,500 to generate 

age at exposure. The following distributions of age at exposure were investigated. 

• Mean age of 250 days and standard deviation of 100 days  

• Mean age of 250 days and standard deviation of 50 days 

• Mean age of 125 days and standard deviation of 100 days 

• Mean age of 125 days and standard deviation of 50 days 

These distributions are shown in Figure 3.3. 
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For some simulations, much more highly peaked distributions of age at exposure were 

considered, with mean age of 125 days and standard deviation of 10, 20, 30, and 40 

days. Figure 3.4 below shows graphs of these more extreme distributions of age at 

exposure.  

0 100 200 Mean 300 400 500
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Mean=250 SD=100

0 100 200 Mean 300 400 500
Age at exposure

Mean=250 SD=50

0 42 Mean 250 330 417 500
Age at exposure

Mean=125 SD=100

0 50 Mean 200 300 400 500
Age at exposure

Mean=125 SD=50

 

Figure 3.3 Distribution of age at exposure  
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Figure 3.4 Unusually peaked distributions of age at exposure 
 
 
3.2.4 Risk periods 
 

In the self-controlled case series method, a major issue one has to consider before 

doing any analysis is to define the risk period. Generally speaking the risk period is 

elicited from experts. Different studies need different risk periods. These range from 

very short (one or a few days) to very long (and occasionally indefinite). Typically, in 

vaccine studies, risk periods of a few days/weeks are used, for example Farrington et 

al [9] defined risk periods in three groups (0-3, 4-7, and 8-14 days) when they 

investigated whether there was any association of diphtheria tetanus pertussis (DTP) 

vaccine with febrile convulsion, whereas to study a putative association of measles 

mumps rubella (MMR) vaccine with febrile convulsion they defined two risk periods 

of 6-11 and 15-35 days after vaccination. In each case these choices were based on 

prior knowledge of the biology of the relevant bacteria and viruses.  
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We used different risk periods in order to investigate the effect of risk periods on the 

performance of the model. We looked at risk periods of 1, 5, 10, 25, 50, 100 and 200 

days. We also investigated indefinite risk periods. Owing to potentially strong 

confounding between age and exposure effects with indefinite risk periods, we 

considered this scenario separately, and also varied the proportion of cases exposed 

(in other simulations all cases are exposed).  

 

3.3 Results from the simulation study 

 

3.3.1 The standard scenario 

 

We shall now define what we are considering as the reference point, or the standard 

(default) values that are typical in studies of childhood vaccination. The standard 

scenario is one in which the risk period is 25 days, all cases have experienced the 

exposure (vaccination), and the age effect is weak symmetric (see Figure 3.2). The 

standard distribution of age at exposure has mean 250 days and standard deviation 

100 days (see Figure 3.3 above). 

 

For each run, ten thousand samples of 10 cases, 20 cases, 50 cases, 100 cases, 200 

cases, 500 cases, 1000 cases with relative incidences 0.5, 1, 1.5, 2, 5, and 10  were 

simulated (a total of 7 6 42× = runs). Tables 3.1 and 3.2 below show the results of the 

data simulated under the standard scenario.  
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 Table 3.1 Simulation results for 
standard scenario. RI= True 
value of Relative incidence.  
Log (RI)= Logarithm of the 
relative incidence 
%low=percentage where true 
value was below lower limit of 
90%, 95%, 99% confidence 
interval.     
%covered=actual percentage 
coverage of 90%, 95%, 99% 
confidence interval.  
%hi=percentage where true 
value was above the  upper limit 
of 90%, 95%, 99% confidence 
interval.  
 
 
 
 
 
 
 
 
 
 
 

 

 
True value 

 
RI      Log(RI) 

 

10 000 samples of 10 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 20 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 50 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 0.500      -0.693 0.000       −∞  
(4%,  96%,  0%) 
(3%,  97%,  0%) 
(2%,  98%,  0%) 

0.000       −∞  
(8%,    92%,  0%) 

(3.5%,   96%,  0.5%) 
(1.7%,   98%,   0.3%) 

0.378      -0.973 
(4.9%,  95%,  0.1%) 

(4%,  96%,   0%) 
(1.%,   99%,   0%) 

1.000      0.000 0.000       −∞  
(7%,  93%, 0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.887      -0.120 
(7%,  93%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.994      -0.006 
(5.8%,   94%,  0.2%) 
(3.8%,   96%,  0.2%) 

(1%,  99%,  0%) 
1.500      0.405 1.411     0.541 

(4.8%,  95%,  0.2%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

          1.414        0.347 
(6%,  94%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

1.478      0.391 
(5.7%,  94%,  0.3%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

2.000      0.693 2.004      0.695 
(6%,  94%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

      1.908       0.646 
(6%,  94%, 0%) 

(3.6%,  96%, 0.4%) 
(1%,  99%,  0%) 

1.967      0.676 
(6%,  92%,  2%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

5.000      1.609 4.875       1.584 
(5%,  95%, 0%) 
(2%,  98%, 2%) 
(0%, 100%, 0%) 

5.037      1.617 
(6%,  92%, 2%) 
(3%,  97%,  0%) 

(0%,  100%,  0%) 

5.008      1.611 
(6%,  91%,  3%) 
(3%,  96%,  1%) 
(1%,  99%,  0%) 

10.000      2.303 11.189    2.415 
(5%,  94%, 1%) 
(1%,  99%,  0%) 
(0%,  100%,  0%) 

10.667      2.367 
(6%,  90%,  4%) 
(3%,  96%,  1%) 

(0%,  100%,  0%) 

10.224      2.325 
(6%,  90%,  4%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 
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Table 3.2, Simulation results for the standard scenario (continued from Table 3.1) 

 
True Value 

 
RI      Log(RI) 

10 000 samples of 100 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 200 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 1000 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693             0.509   -0.676 
(5%,  95%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.474      -0.823 
(5.6%,    92%,  2.4%) 
(2.9%,   97%,  0.1%) 

(1%,   99%,   0%) 

0.495      -0.703 
(5.7%,  91%,  3.3%) 
(3.1%,  96%,   0.9%) 
(0.7%,   99%,   0.3%) 

0.496      -0.701 
(5.5%,  90%, 4.5%) 
(3.1%,  95%,  1.9%) 
(0.7%,  99%,  0.3%) 

1.000      0.000 0.995   -0.005 
(5.7%,  92%, 2.3%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.989      -0.011 
(5.8%,  91%,  3.2%) 
(3.3%,  95%,  1.7%) 

(1%,  99%,  0%) 

0.996      -0.004 
(5.1%,   90%,   4.9%) 
(3.1%,   95%,  1.9%) 

(1%,  99%,  0%) 

1.000      -0.004 
(5%,  90%,  5%) 
(3%,   95%,  2%) 
(0%,  99%,  1%) 

1.500      0.405 1.409   0.380 
(5.9%,  91%,  3.1%) 
(3.2%,  96%,  0.8%) 

(1%,  99%,  0%) 

1.492     0.400 
(5.9%,  90%,  4.1%) 
(2.9%,  95%,  2.1%) 
(0.7%,  99%,  0.3%) 

1.493      0.401 
(5.5%,  90%,  4.5%) 

(3%,  95%,  2%) 
(0.7%,  99%,  0.3%) 

1.497      0.404 
(5%,  90%,  5%) 
(2%,  96%,  2%) 
(1%,  99%,  0%) 

2.000      0.693 1.976 0.681 
(5.5%,  91%,  3.5%) 
(2.9%,  96%,  1.1%) 

(1%,  99%,  0%) 

          1.992       0.689 
(5.7%,  90%,  4.3%) 

(3%,  95%,  2%) 
(0.7%,  99%,  0.3%) 

2.000      0.693 
(5.8%,  89%,  5.2%) 
(3.1%,  95%,  1.9%) 
(0.7%,  99%,  0.3%) 

              1.995     0.691 
(5%,  90%,  5%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 

5.000      1.609 5.011       1.612 
(6%,  90%,  4%) 
(3%,  95%,  2%) 
(1%,  99%, 0%) 

5.012      1.612 
(6%,  90%,  4%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 

5.005      1.610 
(3%,  90%,  5%) 
(2%,  95%,  3%) 
(1%,  99%,  0%) 

5.004      1.610 
(5%,  90%,  5%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 

10.000      2.303 10.123 2.315 
(6%,  90%,  4%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 

10.035      2.306 
(5%,  90%,  5%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 

10.016      2.304 
(5%,  90%,  5%) 
(3%,  95%,  2%) 
(1%,  99%,  0%) 

10.020      2.305 
(5%,  90%,  5%) 

(2.9%,  95%,  2.1%) 
(0.6%,  99%,  0.4%) 
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The first column of Tables 3.1 and 3.2 shows the value of the true relative incidence 

followed by the logarithm of the true relative incidence.  The next columns shows 

median estimate (values in bold) for 10 000 samples of the simulated data for 

different number of cases, followed by the logarithm of the median estimate. Below 

the median estimates (values in italics), we have three rows of values corresponding 

to the percentages of 90%, 95%, and 99% confidence intervals were the true value 

was below (%low), within (% covered) and above (%hi) the 90%, 95%, and 99% 

confidence intervals respectively. Figure 3.5 below shows the relative bias, defined as 

the ratio   

       
(median relative incidence) (true relative incidence)

,
(true relative incidence)

−
  

as a function of sample size for relative incidences of 0.5, 1, 1.5, 2, 5, 10. The 

numbers of cases considered were: 10, 20, 50, 100, 200, 500 and 1000.   
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Figure 3.5 Relative (median) bias against median estimates for samples of 10, 20, 50, 
100, 200, 500, and 1000 cases for true relative incidences of 0.5, 1, 1.5, 2, 5, 10.  
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The relative bias is used here for comparison purposes between different true relative 

incidences. Note that we would expect the relative bias to be equal to zero if the 

estimates were not biased. 

 

We can see in Figure 3.5 above that the median estimates obtained using the self-

controlled case series model with 10 and 20 cases were biased when estimating true 

relative incidences of 0.5 and 1. This bias largely disappears as the number of cases 

increases say for numbers of cases greater or equal to 20. The bias was small when 

estimating the true relative incidences of 1.5, 2, 5 and 10.  In chapter two, we showed 

that the bias (when there are no age effects) is negative when 
1 r

e
r

β −<  and positive 

when
1 r

e
r

β −> . A similar phenomenon is demonstrated in Figure 3.5 above: the bias 

tends to be negative for small values of the relative incidence, and positive for large 

values of the relative incidence (here 25
500 0.05= =r ). 

 

The other pattern we can see in Tables 3.1 and 3.2 is that the coverage probabilities 

for the confidence intervals were reasonably close to the nominal values even with 

small numbers of cases. Figure 3.6 below illustrates the percentages of 90%, 95%, and 

99% confidence intervals that contained the true relative incidence.  The figures 

indicate that overall, for the standard scenario described above, the coverage 

probabilities tend to be slightly conservative (that is, higher than nominal values) for 

small sample sizes. As one would expect, the larger the number of cases, the more 

accurate the coverage probabilities are. Note finally that the confidence intervals tend 

to be non-central, and are systematically shifted upwards so that the percentage of 

simulations in which the lower confidence limit falls above the true parameter value is 
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greater than the percentage of simulations in which the upper confidence limit falls 

below the true value.  
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Figure 3.6 Percentages of 90% (in blue/dash), 95% (in red/solid) and 99% (in 
green/dots) confidence intervals that contained the true relative incidence of 0.5,1, 
1.5, 2, 5, 10 for samples of 10, 20, 50, 100, 200, 500, and 1000 cases.   
 
 
3.3.2 Varying the risk period  

 

In this section we present results from simulations for the standard scenario defined 

above, except that instead of keeping the risk period fixed at 25 days, we varied it. 

The risk periods we looked at were: 1 day, 5 days, 10 days, 50 days, 100 days, and 

200 days. We shall classify the risk periods as; ‘short risk period’ for 1 day and 5 days 

risk periods, ‘typical risk period’ for 10 days and 50 days, and ‘long risk period’ for 

100 and 200 days risk periods. The interest is in observing the effect of the risk period 

on the estimates obtained by the model. Further, to reduce the output, we have 
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restricted our simulations to 20, 100, and 500 cases. Tables 3.3 to 3.8 shows the 

results. In order to reduce clutter, we only present Table 3.3 and 3.4 here; Tables 3.5 

to 3.8 are presented in APPENDIX 1. Table 3.3 shows results for a 1 day risk period, 

Table 3.4 for a 5 days risk period and so on in increasing order up to Table 3.8 which 

shows results for a 200 days risk period. We summarise the results given in Tables 3.3 

to 3.8 via the relative bias graph (see Figures 3.7 (a), (b), (c)) for true relative 

incidence of 0.5, 1, 1.5, 2, 5, 10. We can see from Tables 3.3 to 3.8 that the coverage 

probabilities for the 90%, 95%, and 99% confidence intervals are generally 

conservative, and become closer to their nominal values as the risk period increases in 

the range considered.  
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Table 3.3 Simulation results for 1 
day risk period. 
 
(see Table 3.1 for details) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

RI      Log(RI) 10 000 samples of 20 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
     Median 
90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693 0.000     −∞  
(2%, 98%, 0%) 
(2%, 98%, 0%) 
(2%, 98%, 0%) 

0.000       −∞  
         (1%,    98%,  1%) 

(2%,   98%,  0%) 
(2%,   98%,   0%) 

0.000       −∞  
(10%,    90%, 0%) 
(2%,   98%,  0%) 
(2%,   99%,   0%) 

1.000      0.000 0.000     −∞  
(4%, 96%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.000      −∞  
(2%,  98%,  0%) 
(2%,  98%,  0%) 
(2%,  98%,  0%) 

0.928      -0.074 
(10%,  90%, 0%) 
(1%,  99%, 0%) 
(2%,  98%,  0%) 

1.500      0.405 0.000     −∞  
(6%, 94%, 0%) 
(6%, 94%, 0%) 
(1%, 99%, 0%) 

          0.000      −∞  
(4%,  96%,  0%) 
(4%,  96%,  0%) 
(2%,  98%,  0%) 

0.961      -0.040 
(8%,  92%, 04%) 
(2%,  98%,  0%) 
(1%,  99%,  0%) 

2.000      0.693 0.000     −∞  
(8%, 92%, 0%) 
(4%, 96%, 0%) 
(1%, 99%, 0%) 

0.000       −∞  
(7%,  93%,  0%) 
(3%,  96%, 1%) 
(1%,  99%,  0%) 

1.864      0.623 
(7%,  93%, 0%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

5.000      1.609 0.000       −∞  
(5%,  95%, 0%) 
(2%,  98%, 0%) 
(2%,  98%, 0%) 

4.636      1.534 
(9%,  91%, 0%) 
(3%,  97%, 0%) 
(2%,  98%, 0%) 

4.732      1.554 
(5%,  93%, 2%) 
(4%,  96%, 0%) 
(1%,  99%, 0%) 

10.000      2.303 0.000       −∞  
(7%,  93%,  0%) 
(2%,  96%, 2%) 
(1%,  99%,  0%) 

9.397      2.240 
(6%,  94%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

9.669    2.269 
(6%,  90%, 4%) 
(3%,  96%,  1%) 
(1%,  99%,  0%) 
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Table 3.4 Simulation results for 5 
days risk period.  
 
 
(see Table 3.1 for details)

RI      Log(RI) 10 000 samples of 20 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693 0.000     −∞  
(10%, 90%, 0%) 
(3%, 97%, 0%) 
(1%, 99%, 0%) 

0.000       −∞  
         (10%,    90%,  0%) 

(2%,   98%,  0%) 
(2%,   98%,   0%) 

0.531      -0.634 
(6%,    94%, 0%) 
(4%,   96%,  0%) 
(1%,   99%,   0%) 

1.000      0.000 0.000     −∞  
(5%, 95%, 0%) 
(2%, 98%, 0%) 
(2%, 98%, 0%) 

0.898  -0.108 
(8%,  92%,  0%) 
(3%,  97%,  0%) 
(2%,  98%,  0%) 

0.943      -0.058 
(5%,  93%,  2%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.500      0.405 0.000     −∞  
(4%, 96%, 0%) 
(4%, 96%, 0%) 
(1%, 99%, 0%) 

1.018      0.018 
(7%,  93%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

1.477      0.390 
(6%,  90%,  4%) 
(3%,  96%,  1%) 
(1%,  99%,  0%) 

2.000      0.693 0.000     −∞  
(6%, 94%, 0%) 
(6%, 94%, 0%) 
(1%, 99%, 0%) 

1.866      0.625 
(6%,  94%,  0%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

2.000      0.646 
(5%,  91%,  4%) 
(2%,  96%, 2%) 
(1%,  99%,  0%) 

5.000      1.609 4.745      1.557 
(7%,  93%, 0%) 
(4%,  96%, 0%) 
(1%,  99%, 0%) 

4.840      1.577 
(6%,  92%, 2%) 
(3%,  97%, 0%) 
(1%,  99%, 0%) 

4.986      1.607 
(6%,  91%, 3%) 
(3%,  95%, 2%) 

(0.6%,  99%, 0.4%) 

10.000      2.303 9.969      2.299 
(5%,  95%,  0%) 
(3%,  97%, 2%) 
(1%,  99%,  0%) 

9.882      2.291 
(6%,  90%,  4%) 
(3%,  96%,  1%) 
(1%,  99%,  0%) 

9.963    2.299 
(5%,  91%, 4%) 
(3%,  95%,  2%) 

(0.7%,  99%,  0.3%) 
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The graphs in Figures 3.7 (a), (b) and (c) show that, for each sample size, the relative 

bias was greatest for 1 day risk period, particularly for low relative incidences. For a 

given relative incidence, the bias is negative for short risk periods and positive for 

long risk periods. The sign of the bias essentially depends on the number of cases in 

the risk and control periods. As the number of cases increases, the relative bias 

decreases and is close to zero even with 1 day risk period.  
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Figure 3.7 Relative median bias for 10 000 samples of 20, 100, and 500 cases at true 
relative incidences of 0.5, 1, 1.5, 2, 5, 10  
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3.3.3 Varying the age effect  

 

In this section, we explore the effects of age for the strong symmetric, weak 

monotone, and strong monotone increasing age effects (see Figure 3.2 for the 

different age groups and their corresponding age specific relative incidences). We use 

sample sizes 20, 100 and 500 cases as in section 3.3.2, and use risk periods of 10 

days, 25 days, and 50 days with relative incidences of 1, 2 and 5. The distribution of 

age at exposure is the standard one with mean 250 days and standard deviation 100 

days. 

 

Tables 3.9 to 3.11 in APPENDIX 1 shows the results. Tables 3.9 corresponds to the 

strong symmetric age effect, Table 3.10 to the weak monotone increasing age effect, 

and Table 3.11 to the strong monotone increasing age effect. The results in these 

tables are summarised in Figures 3.8 to 3.10. We can see that the relative bias is 

largest for 20 cases, being the smallest number of cases considered. As for the 

findings in section 3.3.2, we note that it is for the shorter risk period (10 days risk 

period in blue/dash) that the relative bias is most prominent.  In contrast, the age 

structure, (strong monotone, strong symmetric, or weak monotone) has little influence 

on the relative bias. It appears that the performance of the model is mainly influenced 

by the number of cases and the length of the risk period. Likewise, Tables 3.9 to 3.11 

show that the coverage probabilities of the 90%, 95%, and 99% confidence intervals 

are not substantially affected by the age structure.    
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Figure 3.8 Relative median bias for 10 000 samples of 20 cases at true relative 
incidences of 1, 2, 5 with age effects for strong monotone, strong symmetric and weak 
monotone. The risk periods are 10 days, 25 days and 50 days.  
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Figure 3.9 Relative median bias for 10 000 samples of 100 cases at true relative 
incidences of 1, 2, 5 with age effects for strong monotone, strong symmetric and weak 
monotone. The risk periods are 10 days, 25 days and 50 days. 
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Figure 3.10 Relative median bias for 10 000 samples of 500 cases at true relative 
incidences of 1, 2, 5 with age effects for strong monotone, strong symmetric and weak 
monotone. The risk periods are 10 days, 25 days and 50 days. 
 

3.3.4 Varying the age at exposure. 

 

In the last few sections, we varied the relative incidence, risk periods and the age 

dependence but in all scenarios, the distribution of age at exposure was kept fixed to a 

symmetrical beta distribution with mean 250 days and standard deviation 100 days 

(see Figure 3.3). Here we explore the performance of the model when we vary the 

distribution of age at exposure. We present results for the simulations of 100 cases 

only, and restrict attention to relative incidences of 1, 2, and 5 and risk periods of 10 

days, 25 days and 50 days as in section 3.3.3.  We present results for weak symmetric 



 83 

age effects (the standard scenario) and strong monotone increasing age effects. We 

investigate distributions of age at exposure with mean 250 days and standard 

deviation of 50 days, mean age of 125 days and standard deviation of 100 days, and 

mean age 125 and standard deviation 50 days, as shown in Figure 3.3. The results are 

given in Tables 3.12 and 3.13 (APPENDIX 1). The graphs in Figures 3.11, (a), (b) 

and (c) below show the relative bias for different age distribution at exposure and 

different age effects.    

 

Figure 3.11 (a) shows that a symmetric distribution of age at exposure that is more 

peaked than that of standard scenario (standard deviation 50 days and mean 250 days) 

has little effect on the results. However Figures 3.11 (b) and (c) reveal some 

differences when the distribution of age at exposure is skewed. In this situation, the 

bias is greater when the age effect is strong monotone than when it is weak 

symmetric. When the age effect is strong monotone, events are most likely to occur at 

older ages, whereas most risk periods span younger ages. Thus the imbalance between 

expected numbers of events in risk period and control periods is greater and this leads 

to greater bias. This effect is most pronounced for short risk periods. A further reason 

for the bias may be confounding between age and exposure effects.  
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Figure 3.11  Relative bias against relative incidence, for risk periods 10, 25, 50 days 
and two age effects, when the mean age at exposure is 250 days, standard deviation 50 
days (a), mean age at exposure is 125 days, standard deviation 100 days (b), and mean 
age at exposure is 125 days and standard deviation 50 days (c). 
 
  
3.3.5 Indefinite risk periods 

 

In all the scenarios explored so far, the risk periods were of pre-determined length.  

The self-controlled case series method can be used even when the risk period 

following an exposure is indefinite. However, the effects of exposure and age may 

then be substantially confounded. The confounding can be controlled by including 

unexposed cases, which contribute exclusively to the estimates of the age effect. This 

was explored in the simulations described below.  

 

In this section, we present results using indefinite post-exposure risk periods when 

100% of cases are exposed, five sixth of the cases are exposed, two thirds of the cases 

are exposed and half of the cases are exposed. We first used two exposure 
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distributions (for those exposed): mean 250 days with 100 days standard deviation 

and with mean 125 days with 50 days standard deviation. We used weak symmetric 

and strong monotone increasing age effect with true relative incidences of 1, 2, and 5. 

All runs include 100 cases exposed. The results from the simulations are presented in 

Tables 3.14 to 3.17 (APPENDIX 1). The coverage probabilities are very close to the 

nominal values. Figure 3.12 summarises the relative bias for all the simulations 

presented in Tables 3.14 to 3.17. 
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Figure 3.12 Relative median bias for 10 000 samples of different exposed proportions 
such that 100 cases were exposed for the true relative incidences of 1, 2, 5 with age 
effects for strong monotone and weak symmetric age groups.  
 

Figure 3.12 shows that the relative bias is small for relative incidences of 1 and 2, 

whatever the age at exposure and age at event distributions. Note that there was one 

exception to this for the relative incidence of 2 with the weak symmetric age effect. 

The outlier could be due to random variation.  
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However, for relative incidence of 5 the relative bias is greater for strong monotone 

increasing age effects than for weak symmetric age effects and greater when the age 

at exposure distribution is skewed than when it is symmetric. This may be explained 

by confounding of age and exposure effects when the risk period is indefinite. 

 

The presence of unexposed cases reduces the bias to some degree, though perhaps less 

than anticipated. To explore these effects further, more peaked and asymmetric 

distributions of age at exposure were investigated. In these additional simulations, the 

relative incidences were 1, 2, and 5 as before, and we used the strong monotone 

increasing age effect. The distributions of age at exposure had mean 125 days and 

standard deviations of 10, 20, 30, and 40 days respectively (see Figure 3.4).  All 

simulations were done with indefinite risk periods, and the same proportions exposed 

as those used earlier. 

 

The results are in Tables 3.18 to 3.20 of APPENDIX 1 and are summarised in Figure 

3.13 below. As expected, the bias tends to increase as the standard deviation of the 

age at exposure decreases. The presence of a small proportion of unvaccinated cases 

greatly reduces the bias: the bias with 5
6  cases vaccinated is much the same as with 

1
2 cases vaccinated.  
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Figure 3.13 Relative bias for strong monotone increasing age effect. 
 
 
 

3.4 Conclusion 

 

In this last section of the chapter, we bring together the main findings.  We have 

investigated a very broad range of scenarios, based on variations of a ‘standard 

scenario’ which is a representative of many studies of paediatric vaccines. In the 

standard scenario we found that the estimates were substantially biased for sample 

sizes of 20 or less, when the true relative incidence was 1≤ . However for relative 

incidence 1.5≥  the biases were moderate even with sample sizes of 10 cases, and 

very small when the number of cases was 50≥ .  

 

In section 3.3.2, risk periods as short as 1 day and up to a maximum of 200 days were 

investigated.  In these situations, the estimates were biased for short risk periods. For 
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example when the risk period was 1 day, the bias was large when the relative 

incidence was 0.5 even with 500 cases. Similarly the bias was large for relative 

incidence of 2 and 100 cases.  Generally speaking, the longer the risk period in the 

range considered (up to 200 days), the less biased the estimates were. 

 

Different age effects classified as weak symmetric, strong symmetric, weak monotone 

increasing, strong monotone increasing were explored in section 3.3.3. There was 

little evidence that these age effects affected the performance of the self-controlled 

case series model with fixed risk periods. The effect of different distributions of age at 

exposure was explored in section 3.3.4.  As with the age at event, the distribution of 

age at exposure did not have much bearing on the results for fixed risk periods.   

 

In section 3.3.5 we looked at the effect of indefinite risk periods. Some researchers 

[51, 52] have argued that the self-controlled case series model may not be effective if 

one is looking at a situation were adverse events may manifest themselves a long time 

after exposure. We explored this issue by extending the risk periods to indefinite 

length.  Results showed that overall there was little bias except for large relative 

incidences and distributions of age at event and age at exposure that induce 

confounding between exposure and age effects. This confounding and the bias it 

generates can be controlled by including unvaccinated cases. Some bias remains, but 

it is not large. Including 20% unexposed cases appears sufficient to reduce the bias to 

acceptable levels. 
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In all situations explored, the coverage probabilities from ten thousand samples of 

different number of cases were in excess of their nominal values, even in the presence 

of substantial bias. 

  

In chapter 2 we found that when there are no age effects, the magnitude of the 

asymptotic bias depends largely on the balance of expected numbers of events in the 

risk and control periods: when the expected number of events in the risk period is less 

than that in the control period, the bias is negative, and vice versa. When the two 

expectations are equal, the bias is zero. 

 

In this chapter we have explored more complex situations and finite samples by 

simulation. Qualitatively similar results emerge: for a given sample size, the bias is 

greatest in magnitude when the expected number of events in the risk period is much 

smaller than the expected number in the control period. In practice, bias is only a real 

problem when the risk period is very short or relative incidence is low. In other 

circumstances, sample sizes in excess of 20 appear to give reliable results. 

 

Another point to mention is the coverage probabilities. These are generally reasonably 

accurate even in the presence of extreme bias: this is not surprising, since when the 

expected number of event in the risk period is very small, the variance of ( )ˆ ˆlogβ ρ=  

(where eβρ =  is the relative incidence) is very large, as may be seen from the 

asymptotic calculations of chapter 2. Hence the confidence intervals will themselves 

be very wide. Confidence intervals based on profile likelihood methods may perhaps 

be better in such circumstances. 
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The overall conclusion is that estimates and confidence intervals based on asymptotic 

theory are reliable except in extreme scenarios (namely very small sample size, very 

short risk period, low relative incidence).  
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Chapter 4 
 
 

Sample size formulae for the self-controlled case series method; first 
attempts 

 
 
4.1 Introduction 
 
 
When designing a study, one of the most important questions to address is the 

required sample size. In this chapter we propose various sample size formulae for 

designing a study that will use the self-controlled case series method. In [3] a sample 

size formula for use in case series studies was derived based on a normal 

approximation to the distribution of the estimated relative incidence. However, the 

performance of this sample size formula has not been evaluated. Furthermore it is 

only valid when there are no age effects.  In this chapter the accuracy of this sample 

size formula is assessed by simulation. Other sample size formulae are explored and 

results from simulation studies to evaluate their performance are given. All these 

formulae assume a simplified situation without age effect. In chapter 5, a formula 

incorporating age effects will be presented. 

 

In section 4.2, we briefly present some background and the notation to be used in this 

chapter. In section 4.3, we derive four sample size formulae based on different 

asymptotic arguments. These formulae are derived under the assumption that there are 

no age effects, and are evaluated in section 4.4.  We conclude with a brief discussion 

in section 4.5. 
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4.2 Background and notation 

 

In this chapter we will be concerned only with situations where the underlying (or 

baseline) incidence of an event is constant, that is, does not vary with age (or time, if 

time is the relevant time line). At each time point, an individual is categorized as 

exposed or unexposed. Typically, the times at which an individual is considered to be 

exposed occur within a defined time interval following a point exposure, for example 

receipt of a vaccine. The period of exposure is called the risk period. 

 

We further assume that all individuals are followed up for an observation period of 

the same length, and that a proportion ν of individuals in the population experience 

the exposure during this observation period. We will assume, also for simplicity, that 

all exposed individuals spend the same time exposed. As mentioned before in chapter 

2, in practice, the observation and exposure periods vary between individuals, but this 

variation can reasonably be ignored for the purposes of sample size calculations. If 1e  

is the length of the risk period and 0e is the duration of the control period, 

then 1 0 1/( )r e e e= + is the proportion of observation time for which an individual is 

exposed. Usually, 1e and 0 1e e+ will be specified in the design. However, only their 

ratio r is required.  

 

During the risk period, the baseline incidence of an adverse event is increased by a 

multiplicative factor eβρ = , where ρ  is the relative incidence. The value of 

parameter ρ  (or β ) which may be considered clinically important is the focus of 
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inference. Under the null hypothesis, 1ρ =  whereas under the alternative hypothesis 

we specify some value for 1,ρ ≠ the value we wish the study to detect. 

 

A case is an individual who experiences at least one event during the observation 

period. Suppose that a sample of cases is available, and that a total of n events arise in 

these cases. Note that n  refers to events, not individuals: the case series method 

allows multiple events per individual, provided these events are independent. Our 

sample size formulae will generally relate to numbers of events, though in the next 

chapter we briefly touch upon estimating the number of cases required. If the event of 

interest is non-recurrent, then the case series method still applies provided the event is 

rare.  Of these n events, suppose that en arise in exposed individuals, that is, 

individuals who were exposed at some time during the observation period. Suppose 

also that un  events arise in unexposed individuals, that is, individuals who were not 

exposed during the observation period. Of the en events in exposed individuals, 

suppose that x  arise in a risk period. Then the case series log likelihood for the 

parameter ρ  can be shown (see chapter 2) to be 

                   

( ) ( ) 1
log log .                                              (4.1)

1 1e

r r
x n x

r r r r

ρρ
ρ ρ

⎛ ⎞ ⎛ ⎞−= + −⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠
l  

 

Note that (4.1) is equivalent to a binomial likelihood with binomial proportion 

( )/ 1r r rπ ρ ρ= + −  and index en , and that it does not involve un : only exposed 

individuals contribute to the log likelihood when there are no age effects. The 

likelihood ratio statistic for the test of 0 : 1H ρ =  (or equivalently 0β = ) is thus 
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              ( ) ( ){ } ( ) ( ){ }ˆ ˆ ˆ2 1 2 log log 1 .                        (4.2)eD x n r rρ ρ ρ= − = − + −l l  

where ρ̂ is the maximum likelihood  estimator of ρ . Finally, note that, in large 

samples, we have 

                
1 ( 1)

 .                                                                            (4.3) 
( 1 )e

r
n n

r r

ν ρ
ν ρ

+ −
+ −

�  

In particular, if 1ρ = then /en n ν� in large samples, and if 1,=ν  then en n= . 

 

We present four sample size formulae based on different asymptotic approximations, 

assuming there is no age effect. In what follows, the significance level is denotedα , 

and to avoid confusion with the parameter β (the log relative incidence) we shall 

denote power to be 1 γ− . Thus 1 / 2Z α− is the ( )(1 / 2 ) quantileα− − of the standard 

normal distribution, and Zγ is its quantileγ − . For simplicity, the formulae quoted in 

this chapter are for ,en the total number of events required in exposed individuals.  

 

4.3 Sample size formulae without age effects 

 

4.3.1 Sample size formula based on the asymptotic sampling distribution of ρ  

 

In this subsection, we describe the sample size formula which was first published by 

Farrington et al [3]. The idea behind the derivation of the formula is to use ρ̂ as the 

test statistic, and base the sample size formula on its asymptotic normal distribution. 

The asymptotic variance of ρ̂  may be obtained by twice differentiating (-1) times 

expression (4.1) with respect to ρ , taking expectations, and inverting the result. This 

gives the expression for the variance as 
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                ( ) ( )
( )

2
11

ˆvar .
1e

r r

n r r

ρ ρ
ρ

+ −
−

�  

A general sample size formula for a normally distributed test statistic where one 

assumes that the variance under the null hypothesis is different from that under the 

alternative hypothesis is given by  Armitage et al [53] as          

2

0 1 / 2 1

1 0

.                                                                                         (4.4)
Z Z

n α γσ σ
µ µ
− +⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

where the test statistic under 0H  is distributed 

           
2
0

0 ,
⎛ ⎞
⎜ ⎟
⎝ ⎠

N
n

σµ  

and under 1H  is distributed 

            
2
1

1,
⎛ ⎞
⎜ ⎟
⎝ ⎠

N
n

σµ  

Note that 1 0−µ µ is the clinically important difference to be detected in the population. 

Thus under the null hypothesis, 

          ˆ (1,1/ (1 ))eN n r rρ ≈ −   

and under the alternative, 

             ( )( )2ˆ , 1 / (1 )eN r r n r rρ ρ ρ ρ≈ + − − .  

Replacing the parameters from the two approximate distributions of ρ̂  under the null 

and alternative hypothesis in the general expression (4.4) leads to the following 

sample size formula: 

                         ( )
2

1 / 22

1
1 .                 (4.5)

(1 )( 1)en Z Z r r
r r α γ ρ ρ

ρ −
⎡ ⎤= × + + −⎣ ⎦− −
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The above is a special case of the formula given by Farrington et al [3] with everyone 

exposed. Note that in all sample size formulae given here we round en up to the next 

integer that is greater or equal to the number of events needed.   

 

4.3.2 Sample size formula based on the asymptotic sampling distribution of β  

 

A concern about (4.5) is that the sampling distribution of ρ̂ may not be symmetric in 

small samples. Thus we derived a sample size formula based on the sampling 

distribution of ( )ˆ ˆlogβ ρ= in the hope that this might be less skewed. In chapter two 

we showed that the asymptotic variance of β̂ up to the first order in en (see formula 

(2.6)) is 

              ( ) ( )2
11ˆvar .

(1 )e

r r

n r r

ρ
β

ρ
+ −

−
�           

 

Under the null hypothesis, ( )( )ˆ 0,1/ 1eN n r rβ ≈ − whereas under the alternative, 

( ) ( )( )2ˆ , 1 / 1eN r r n r rβ β ρ ρ≈ + − − . Using (4.4) leads to the following expression for 

the sample size formula: 

                            

( ) ( )
( )

2

1 / 22

1
1 / .                                            (4.6)

1 log
en Z Z r r

r r
α γ ρ ρ

ρ −
⎡ ⎤= × + + −⎣ ⎦−
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4.3.3 Sample size formula using second order variance of β̂  

 

As has been mentioned above, sample size formula (4.6) was obtained in an effort to 

try and improve on the possible non-symmetric distribution of ρ̂ in small samples. 

Evaluation of formulae (4.5) and (4.6) under simulation showed that the two formulae 

were not accurate (results shown in section 4.4): the observed power was not as 

expected in some cases. The results from the simulation were particularly poor when 

the risk period was short and the clinically important relative incidence to be detected 

was in the extremes, for example relative incidences of 0.1, or 10. Having identified 

this problem, we extended the asymptotic variance of the estimate β̂ up to the second 

order in en , in the hope that the sample size formula derived would better take 

account of the variation in the estimate of the relative incidence. Below is how the 

sample size formula using second order asymptotic variance was derived.    

Let 
1

r
p

r r

ρ
ρ

=
+ −

be the risk of an event in the risk period 

and
1

1
1

r
q p

r rρ
−= − =
+ −

the risk of the event occurring in the control period. As 

before r is the ratio of the risk period to the observation period. The second order 

asymptotic variance was found in chapter 2 as: 

( ) ( )2 3 3

2 2 2 2 2 2

21ˆvar( )
2e e e

p qp q

n pq n p q n p q
β

+−
= − +   

Under 2
0 0 0

ˆ:   0,   var( ),  and 1. eH nµ β σ β ρ= = =� Substituting ,  ,  and p qρ  in 

( )ˆvar β above and simplifying, we have: 

( )3 32
2
0 2 2 2 2

2 (1 )1 (2 1)
.

(1 ) 2 (1 ) (1 )e e

r rr

r r n r r n r r
σ

+ −−= − +
− − −
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Under 
( ) ( )2 3 3

2 2
1 1 1 1 2 2 2 2

21ˆ: ,    var( ),     
2e

e e

p qp q
H n

pq n p q n p q
µ β σ β σ

+−
= = ∴ = − +  

Substituting 0 1 and σ σ in (4.4) and simplifying in terms of ,  and r ρ , we get the 

following sample size formula: 

( )

2
1

1 / 2

22

2 3 3

2

                                                                                                (4.7)
( (1 )) log( )

where

(2 1) 2( (1 ) )
(1 )

2

(
(1 )( 1 )

e

e e

Z A Z B
n

r r

r r r
A r r

n n

r
B r r r r

α γ ρ

ρ

ρρ ρ

−
−

⎡ ⎤+⎣ ⎦=
−

− + −= − − +

= − + − −
( )3 32 2 2 ( ) (1 ) ( 1 )1 ) ( 1 )

2 e e

r r r rr r r

n n

ρ ρρ + − + −− + + − +

 

Note that the above formula is implicit since en occurs both on the left and right hand 

sides of (4.7). We obtained en by an iterative search from a particular starting point. 

We used the lowest value of en obtained from sample size formulae (4.5) and (4.6) as 

the starting values.  

 

4.3.4 Sample size formula based on the binomial proportion 

 

In the simplified setting as described earlier, events in exposed individuals occur 

either in the risk period or in the control period. Hence the events can be considered to 

follow a binomial distribution with proportion ( )/ 1r r rπ ρ ρ= + − ; therefore, we can 

use binomial proportions to derive a sample size formula for the self-controlled case 

series method. The binomial probabilities under 0 1 and H H  are: 

  0 0 P(event in risk period )H rπ = =  
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  1 1 P(event in risk period )
1

r
H p

r r

ρπ
ρ

= = =
+ −

 

Let x  denote the number of events in the risk period, 

thus ( ) ( )0 0 1 1Bin ,  under  and Bin ,  under .e ex n H x n Hπ π� �  

By the normal approximation to the binomial (Fleiss et al [54]), under 

0
0

0 0

, (0,1)
(1 )

e

e

x n
H N

n

π
π π
− ≈

−
 and under 1

1

1 1

, (0,1)
(1 )

e

e

x n
H N

n

π
π π
− ≈

−
. The sample size 

formula based on the normal approximation to the binomial distribution (Fleiss et al 

[54]) is given by: 

2

1 / 2 0 0 1 1

1 0

(1 ) (1 )
e

Z Z
n α γπ π π π

π π
−

⎡ ⎤− + −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
.  

Substituting the values of 0π and 1π  we get: 

 

( )

( )

2

1 / 2 2

2

1 / 2

(1 )
(1 )

1

( 1)(1 )
1

1 (1 ) (1 )
   .                                                 (4.8)

( 1)(1 )

e

r r
Z r r Z

r r
n

r r

r r

r r Z r r Z r r

r r

α γ

α γ

ρ
ρ

ρ
ρ

ρ ρ
ρ

−

−

⎡ ⎤−− +⎢ ⎥
+ −⎢ ⎥= ⎢ ⎥− −

⎢ ⎥+ −⎢ ⎥⎣ ⎦

⎡ ⎤+ − − + −
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
 

In the next section we present a comparative evaluation by simulation of sample size 

formulae (4.5), (4.6), (4.7) and (4.8).  
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4.4 Comparative evaluation of sample size formulae (4.5), (4.6), (4.7) and (4.8) 

 

So far, we have derived four sample size formulae for the self-controlled case series 

method. We now present results from a simulation study to evaluate them.  

 

4.4.1 Simulation study 

 

The simulation study was carried out as follows. First we specified the observation 

period (500 days), the relative incidence ( ρ ), the value r , that is the ratio of the risk 

period to the observation period, the power (set at either 80%  or 90%), the 

significance level (set at 5%) and we assumed everybody was exposed.  The values of 

r , the ratio of the risk period to the observation period were 0.01, 0.05, 0.1, and 0.5 

(corresponding to 5, 25, 50, and 250 days, respectively). The relative incidences ( ρ ) 

to be detected at the two sided 5% significance level with 80% or 90% power were 

0.1, 0.5, 1.2, 1.5, 2, 3, 5, 8 and 10. 

 

After calculating the number of cases required using the specified parameters, we 

rounded the sample size en up to the next integer. We then generated 2000 random 

samples of en cases with a single event per case. Each of the en cases was obtained 

using a 500-day observation period, including a risk period of duration 500× r days. 

Thus all cases were assumed to be exposed. The single event for each case was 

randomly allocated to the risk and control period based on the true value of ρ . 

Then ρ was estimated using the self-controlled case series method for each sample 

of en events. The observed power was found by calculating the overall proportion of 
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the 2000 samples for which the likelihood ratio test rejected the null hypothesis at the 

5% significance level. The Monte Carlo standard error (MCSE) for the empirical 

power is found by 

         
( )power 1 power

MCSE .
number of simulations

× −
=   

It is about 0.89 per cent at 80% power and 0.67 per cent at 90% power.  

 

4.4.2 Results 

 

Tables 4.1 and 4.2 below show the results obtained using the four sample size 

formulae. The combination of four values of r , nine values of ρ  , two powers, and 

four sample size formulae thus required 288 different simulations of 2000 samples. 

The different sample sizes calculated using the different formulae are given in 

columns headed 5, 6, 7, 8N N N N  corresponding to sample size formulae numbered 

(4.5), (4.6), (4.7), (4.8)  respectively. The corresponding observed power (in %) under 

simulation for each sample size is given in columns headed 5P , 6P , 7P , 8P .   

 

The sample sizes produced by the four formulae are generally of a similar order of 

magnitude, with some very noticeable exceptions, particularly 

with 0.01 and 5= ≥r ρ . For 0.01, 10= =r ρ and power 0.8, the sample sizes ranged 

from 29 ( 8N ) to 170 ( 7N ), a greater than 5-fold difference. This variation indicates 

that some of these formulae, at least, must be inaccurate over this range. 

 

It is clear that all the four formulae 5, 6, 7N N N and 8N are inaccurate for many 

parameter combinations, especially for extreme values of ρ . This could be most likely 



 103 

due to skewness of the sampling distribution of ˆˆ  and ρ β especially for sample size 

formulae 5 and 6N N . Formulae 5 and 8N N  tends to overestimate the sample size 

required (as seen by the empirical power) for relative incidence less than one and 

underestimate the sample size required for relative incidence greater than eight but the 

underestimation is not present for relative incidence greater than eight when the ratio 

of the risk period to the observation period was 0.5 for 80% power and when 

0.1 and 0.5=r  for 90% power  (see 5 and 8 in Tables 4.1 and 4.2P P ). On the other 

hand, the power observed from formulae 6 and 7N N  does not seem to show a clear 

pattern; for some values of the relative incidence, the observed power is greater than 

the nominal value (see 6 and P7P ) and for others it is lower. The power observed 

from all four sample size formulae derived so far seem to be accurate when trying to 

detect relative incidences of 1.2 and 1.5RI = . 
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Table 4.1 Empirical power for 80 per cent nominal value  
r  RI  5N  6N  7N  8N  

 
5P  

% 
6P  

% 
7P  

% 
8P  

% 
0.01 0.10 617 403 819 609 96 67 98 88 
 0.50 2632 2079 2265 2618 81* 80 81* 83 
 1.20 21000 22644 22874 21031 80 80 80 79 
 1.50 3627 4327 4448 3638 78 84 84 80 
 2.00 1010 1379 1499 1015 76 87 88 78 
 3.00 301 505 610 302 78 88 95 79 
 5.00 97 216 306 98 80 95 97 80 
 8.00 42 122 199 42 62 98 99 62 
 10.0 30 97 170 29 79 98 99 79 
0.05 0.10 128 81 161 119 96 67 99 89 
 0.50 544 427 462 529 84 80 78 86 
 1.20 4400 4741 4767 4431 80 80 80 80 
 1.50 767 910 891 779 77 84 82 80 
 2.00 217 293 274 223 76* 85 83 72* 
 3.00 67 109 86 69 70 88 84 74 
 5.00 24 48 56 24 80 95 96 80 
 8.00 12 28 43 11 75 95 99 69 
 10.0 9 22 36 8 63 98 99 56 
0.1 0.10 67 41 79 58 96 62 98 85 
 0.50 284 221 210 269 86 73* 80* 83 
 1.20 2337 2517 2508 2371 78 81 80 80 
 1.50 412 486 479 425 75 82 81 76 
 2.00 119 159 153 125 75 85 81 75 
 3.00 39 60 58 41 64 84 81 75 
 5.00 15 27 15 15 69 89 69 69 
 8.00 9 16 11 8 69* 92 80 81* 
 10.0 7 13 9 6 79 96 79 69 
0.5 0.10 22 9 14 9 99 80 97 80 
 0.50 93 68 69 69 92 77 81 81 
 1.20 886 947 948 948 77 80 80 80 
 1.50 169 194 194 194 73 80 80 80 
 2.00 57 68 69 69 77* 76* 81 81 
 3.00 24 29 29 29 77 81 81 81 
 5.00 15 16 14 16 76* 88 82* 88 
 8.00 14 11 9 11 93 87 75 87 
 10.0 14 9 11 9 97 81 93 81 
r = ratio of the risk period to the observation period, 1=v ,the proportion vaccinated, 
RI =  relative incidence to be detected, 5 =N sample size (using formula (4.5) ),  

6 =N sample size ( using formula (4.6) ), 7 =N sample size(using formula (4.7) ), 
8 =N sample size (using formula (4.8) ), 5 =P observed power for 5N , 6 =P observed 

power for 6N , 7 =P observed power for 7N , 8 =P observed power for 8N . *Saw-
tooth phenomenon (see text).  
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Table 4.2 Empirical power for 90 per cent nominal value  
r  RI  5N  6N  7N  8N  

 
5P  

% 
6P  

% 
7P  

% 
8P  

% 
0.01 0.10 696 681 762 688 97 97* 99 95* 
 0.50 3309 2978 3082 3297 91 87 90 90 
 1.20 28622 2981 29950 28641 90 90 90 90 
 1.50 5056 5573 5700 5062 90 91 90 87 
 2.00 1452 1739 1855 1453 88 92 93 89 
 3.00 451 617 720 450 86 94 97 84 
 5.00 155 255 343 152 87 96 99 86 
 8.00 71 140 217 68 91 97 99 89 
 10.0 51 110 183 48 85 99* 98* 82 
0.05 0.10 144 135 241 135 95* 97* 99 97 
 0.50 681 609 648 669 92 90 93* 90* 
 1.20 6006 6251 6277 6026 90 90 90 90 
 1.50 1073 1178 1203 1079 88 90 92 89 
 2.00 315 372 394 316 89 92 94 91 
 3.00 102 135 154 101 84* 94 96 90* 
 5.00 39 57 74 36 86* 93 99 90* 
 8.00 21 33 47 17 90 98 99 81 
 10.0 16 26 40 13 86* 99 99 87* 
0.1 0.10 74 67 117 66 94 96* 99 97* 
 0.50 354 314 332 341 92 90 92* 90* 
 1.20 3196 3324 3336 3217 90 90 90 90 
 1.50 579 633 644 585 89 91 93 88 
 2.00 174 203 213 175 89 90 93 89 
 3.00 60 75 84 59 85* 91 95 90* 
 5.00 25 33 41 22 93 95 98 84 
 8.00 15 20 27 11 91 96 99 84 
 10.0 13 16 23 9 97 97 100 79 
0.5 0.10 24 14 19 11 100 97 99 93 
 0.50 112 92 94 91 95 91* 90* 91 
 1.20 1228 1269 1271 1268 89 90 90 90 
 1.50 247 260 262 259 90 89 90 89 
 2.00 88 92 94 91 87 90 90 90 
 3.00 41 40 42 38 95 90* 92 92* 
 5.00 28 21 25 20 96 95* 95* 89 
 8.00 28 15 20 13 100 91* 98 95* 
 10.0 30 14 19 11 100 97 99 92 
r = ratio of the risk period to the observation period, 1=v ,the proportion vaccinated, 
RI =  relative incidence to be detected, 5 =N sample size (using formula (4.5) ),  

6 =N sample size ( using formula (4.6) ), 7 =N sample size(using formula (4.7) ), 
8 =N sample size (using formula (4.8) ), 5 =P observed power for 5N , 6 =P observed 

power for 6N , 7 =P observed power for 7N , 8 =P observed power for 8N . *Saw-
tooth phenomenon (see text).  
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4.4.3 Saw-tooth phenomenon  
 
 
The discreteness of the data induces a phenomenon known as saw-toothing. For 

example we can see from Table 4.1 that to detect a relative incidence of 2, at 80% 

power, when the ratio of the risk period to the observation period is 0.05, with all 

cases exposed (vaccinated), sample size formula 5N  gives approximately 217 as the 

number of cases needed. The observed power by simulation was 76%, which is 

slightly less than the nominal 80% power. For the same parameters, using sample size 

formula 8N  gives 223 as the approximate number of cases needed and the observed 

power was 72%.  Thus the power is not a monotone increasing function of sample 

size. This was observed in several situations (marked by * in Tables 4.1 and 4.2) and 

with all the other formulae derived. This phenomenon has been observed by other 

researchers for example Chernic et al [55], Cesana et al [56] , Brown et al [57] and 

Hoehler [58].  

 

 The saw-tooth phenomenon means that the power function has the characteristic that 

it decreases slowly and then jumps up and then cyclically repeats the decreasing trend 

followed by an upward jump. The jump always occurs at a higher level of power than 

in the previous cycle. One consequence of this is that there may be no unique sample 

size.  

 

Chernic et al [55] demonstrated that for continuous random variables, for a given 

significance level and alternative hypothesis, the power function increases 

monotonically as sample size increases, but that this is not the case for discrete 

random variables. Figure 4.1 below is adapted from Chernic et al [55] showing a saw-
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toothed power function. Hoehler [58] argues that because the power function is non-

monotonic with discrete data, calculation of a single required sample size is usually 

impossible. We can, however, specify a range of sample sizes over which a study will 

have a given power to reject the null hypothesis. To get round this problem similar 

methods have recently been used to determine exact sample sizes for comparative 

studies using Fisher’s exact test (Thomas and Conlon [59]). 

 

 

Figure 4.1 Saw-toothed behaviour  

 

4.5 Discussion 

 

The sample size formulae derived in this chapter are not accurate. In particular, the 

published sample size formula of Farrington et al [3] is inaccurate for 1<ρ or 1�ρ . 

The least inaccurate of the four sample size formulae is perhaps that based on the 

binomial proportion. In chapter 5 we investigate further variants of the binomial-

based sample size formula. We also explore other sample size formulae which can 

allow us to include the effect of age. Age is an important confounder in studies of 
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vaccine safety, so it is essential that we can have a sample size formula for the self-

controlled case series that can take account of the effect of age.  
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Chapter 5 
 

 
Improved sample size formulae for the self-controlled case series 

method 
 

 
5.1 Introduction 
 

The sample size formulae derived in the previous chapter are not accurate. Hence we 

sought other sample size formulae that we hoped would be more accurate. In this 

chapter, we present these other formulae. 

 

In section 5.2, we derive a sample size formula based on binomial proportions but 

with continuity correction. In section 5.3 we derive a sample size formula also based 

on binomial proportions but based on the arcsine variance stabilizing transformation. 

In section 5.4 we derive a sample size formula based on the signed root likelihood 

ratio statistic. A comparative evaluation of the three formulae is given in section 5.5. 

The likelihood ratio statistic based sample size formula is then generalised to include 

allowance for age effects in section 5.6.  This formula with age effects is evaluated in 

section 5.7. We discuss our findings in section 5.8.   

 

5.2 Sample size formula based on the binomial proportion with continuity 

correction. 

 

Fleiss et al [54] argue that the Type I error of sample size formula (4.8) is 

conservative, and this can be improved by a continuity correction. We thought this 

could be one of the reasons why formula (4.8) was not very accurate. With continuity 
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correction, according to Fleiss et al [54], sample size formula (4.8) can be written as 

shown below: 

2

2

*

1 0

2 2
1 1 1 1                           (5.1)

4 4 ( 1)(1 )
1

e e
e

e
e

n n
n

n r r
n

r r

π π ρ
ρ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥= + + = + +⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎢ ⎥+ −⎢ ⎥⎣ ⎦

 

where en  is the value obtained from sample size formula (4.8) and *
en  is the sample 

size with continuity correction. As before r is the ratio of the risk period to the 

observation period. Note that (5.1) is derived under the same assumptions as those 

used to derive sample size formula (4.8). 

 

5.3 Sample size formula based on the binomial proportion with arcsine 

transformation.  

 

As described in chapter 4, in the simplified setting we are considering, the log 

likelihood is equivalent to that of a binomial with proportion ( )/ 1= + −r r rπ ρ ρ and 

index en . A popular approach to improve the normal approximation to the binomial is 

to use the arcsine variance-stabilizing transformation [60]. In this situation the test 

statistic is  

          ( )ˆarcsin=T π ;  

under the null hypothesis 

          ( )( )arcsin ,1/ 4 eT N r n≈ , 

while under the alternative, 
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        ( )( )( )arcsin / 1 ,1/ 4 eT N r r r nρ ρ≈ + − . Thus we obtain the following 

expression for the sample size formula: 

( )
( )( ) ( )

2

1 / 2

2                                                (5.2)
4 arcsin / 1 arcsin

e

Z Z
n

r r r r

α γ

ρ ρ

− +
=

⎡ ⎤+ − −⎢ ⎥⎣ ⎦

 

 

5.4 Sample size formula based on the signed root likelihood ratio 

 

A limitation of all sample sizes based on the binomial log likelihood is that they are 

not readily extended to handle age effects, since the likelihood is then multinomial. 

Furthermore, the most convenient test to use to decide whether the exposure is 

associated with the outcome is the likelihood ratio test. Thus it makes sense to base 

the sample size on the likelihood ratio statistic (4.2) given in chapter 4. Under the null 

hypothesis, the likelihood ratio statistic has the ( )2 1χ distribution, asymptotically. To 

obtain an asymptotically normal test statistic, we use the signed root likelihood ratio 

derived as follows. 

The log likelihood kernel for the parameter β  given in (4.1) of chapter 4 can be 

written as,  

( )( ) log 1ex n e r rββ β= − + −l . The score function is 

( ) ,
1

en e r
U x

e r r

β

ββ
β

∂ = = −
∂ + −
l

and solving ( )ˆ 0U β = we have
1ˆ log

e

x r

n x r
β

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
 

Hence the likelihood ratio statistic for the null hypothesis 0 : 0H β =  is  

( ) ( ){ } ( ){ }ˆˆ ˆ0 2 log 1eD x n e r rββ β= − = − + −l l2   
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( ) ( ) ( )1
2 log ( ) log log log (1 ) .e e e e

r
D x x n x n x x n n r

r

⎧ − ⎫⎛ ⎞= + − − + − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

  

Under 2
0 1

ˆ, ,  so sgn( ) (0,1)H D D Nχ β� � where  

        

ˆ1    if 0

ˆ ˆsgn( ) 0      if 0

ˆ1    if 0

β
β β

β

⎧+ >
⎪⎪= ⎨
⎪−⎪⎩

=

<

  

Assume that under 2
1

ˆ, 0,  and that asymptoticallysgn( ) ( , )H D Nβ β ξ τ> � for some 

,ξ τ to be determined later. 

Write 

ˆ ˆ( ) sgn( ) sgn( ) 2P( )f x D xβ β= =  

( ) ( ) ( )1
P( ) log ( ) log log log (1 )  e e e e

r
x x x n x n x x n n r

r

−⎛ ⎞= + − − + − −⎜ ⎟
⎝ ⎠

 

Recall that ( )E X  may be written   

( ) eE X n pµ = =  

where  and .
1

r
p e

r r
βρ ρ

ρ
= =

+ −
 

Then, using the delta rule (Matthews[60]), to first order 

( ) ( ) ( ) ( )                                                                   (5.3)f X f X fµ µ µ′+ −�  

hence 

( ) ( )( ) .E f X f µ�  

Now 

P( ) log( ) log( 1 )e en p n r rµ ρ ρ= − + −  

and asymptotically, under 1
ˆ,  sgn( ) sgn( ).H β β=  So  

( )( ) sgn( ) 2 ( ).E f X Pβ µ�  
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Also, from (5.3), 

( ) ( ) ( ) ( )2 2 2
f X f X fµ µ µ′− −⎡ ⎤⎣ ⎦ �  

hence 

( ) ( ) ( ) ( )2 2
var var .ef X X f n pqfµ µ′ ′=⎡ ⎤⎣ ⎦ �  

Now ( ) [ ]22
2 log( )1 ( )

,
2 ( ) 2 ( )

P
f

P P

ρµµ
µ µ

′′ = =  

hence [ ] ( ) ( )
[ ]

2 2
log( ) log( )

var ( ) .
2 ( ) 2 log( ) log( 1 )

en pq pq
f X

P p r r

ρ ρ
µ ρ ρ

=
− + −

�  

Thus the test statistic ( )sgn Dβ  is distributed approximately ( )2,N ξ τ  under 1H , 

with 

( ) [ ] ( )
[ ]

2

2 log( )
sgn 2 log( ) log( 1 ) ,  .

2 log( ) log( 1 )e

pq
n p r r

p r r

ρ
ξ β ρ ρ τ

ρ ρ
= − + − =

− + −
 

Let [ ] ( )2
log( )

2 log( ) log( 1 ) ,
pq

A p r r B
A

ρ
ρ ρ= − + − = and as before 

1

r
p

r r

ρ
ρ

=
+ −

 

Also let C be the critical point of ˆsgn( ) Dβ , and for simplicity assume 0β > .  

It follows that ( )0
ˆ1 P sgn( ) P( )

2
D C H Z C

α β− = > = >  as the statistic is 

approximately (0,1)N  under 0H . So
1

2

  
−

=C Z α . Also, for power 1 ,γ≥ − the critical 

point C  must satisfy ( )1
ˆ1 sgn( ) .

C
P D C H P Z

ξγ β
τ
−⎛ ⎞− ≤ > = >⎜ ⎟

⎝ ⎠
 

So .
C

Zγ
ξ

τ
− ≤ −  It follows that .   eC Z B n Aγ= − +  

Equating the two values ofC and solving for en gives the following sample size 

formula based on the signed root likelihood ratio: 
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( )2

1 / 2
.                                                                                           (5.4)e

Z Z B
n

A

α γ− +
=  

If we include the proportion of the population vaccinated v , the above formula can be 

generalised to the formula shown below: 

( )2

1 / 2( 1) 1
.                                                                        (5.5)

( 1 )

Z Z Bvr
n

v r r A

α γρ
ρ

− +− +=
+ −

  

Note that  and en n from expressions (5.4) and (5.5) are in the ratio determined by (4.3) 

from chapter 4. We can see from (4.3) that if 1=ν , that is everyone is vaccinated, 

then en n= . 

 

5.5 Comparative evaluation of sample size formulae (5.1), (5.2), and (5.4) 

 

In this section, we evaluate the performance of the sample size formulae (5.1), (5.2) 

and (5.4). We tested the performance of the sample size formulae using simulations in 

exactly the same way as described in section 4.4.1 of chapter 4. In all simulations we 

assumed all individuals were exposed, hence 1=v . 

 

5.5.1 Results from the simulation study. 

 

The results for 80% power are shown in Table 5.1, and those for 90% power are 

shown in Table 5.2. As in chapter 4, the numbers of cases calculated from sample size 

formulae (5.1), (5.2), (5.4) for a particular relative incidence to be detected are given 

in columns labelled 1, 2,  and 4N N N . The corresponding observed powers (in %) from 

simulations are given in columns labelled 1, 2,  and 4P P P . We can see a marked 

improvement in terms of the observed power for each sample size formula derived 
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here. Almost all parameter values gave accurate power (one exception is the 

combination of 0.01 and 0.1r RI= = ). This shows that the sample size formula based 

on the binomial with continuity correction, or that using the arcsine variance 

stabilizing transformation, or that based on the signed root likelihood ratio statistic 

would give an accurate sample size. Note that the saw-toothed phenomenon 

mentioned in chapter 4 is still present for sample size formulae (5.1), (5.2) and (5.4). 

In the next section, we extend the sample size formula based on the signed root 

likelihood ratio statistic so as to take account of age. 
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Table 5.1 Empirical power for 80 per cent nominal value  
r  RI  1N  2N  4N  1P  

% 
2P  

% 
4P  

% 
0.01 0.10 609 420 462 88* 67 92* 
 0.50 2618 2299 2394 81 80 81 
 1.20 21031 21801 21537 80 80 80 
 1.50 3638 3944 3835 80 80 79 
 2.00 1015 1167 1111 78 81 80 
 3.00 302 377 348 78 79 80 
 5.00 98 135 119 80* 77* 82 
 8.00 42 63 54 82* 80* 81 
 10.0 29 46 38 79 80 79 
0.05 0.10 119 84 92 82 78 79 
 0.50 529 469 487 84 80 82 
 1.20 4431 4580 4529 79 81 80 
 1.50 779 838  817 79 81 79 
 2.00 223 253 242 81* 80* 79 
 3.00 69 85 79 80 84 80 
 5.00 24 32 29 80 82 80 
 8.00 12 17 14 75 80* 81* 
 10.0 9 13 11 78 79 78 
0.1 0.10 58 42 46 85 82 83 
 0.50 269 241 250 81* 82* 84 
 1.20 2371 2441 2417 79 80 80 
 1.50 425 453 443 76 80 79 
 2.00 125 140 134 75 81 80 
 3.00 41 49 46 80 81 80 
 5.00 16 20 18 78 79* 84* 
 8.00 8 11 10 81* 81 78* 
 10.0 7 9 8 79 79 80 
0.5 0.10 10 9 9 81 80 80 
 0.50 69 68 69 81 79 81 
 1.20 948 947 948 80 80 80 
 1.50 194 194 194 80 80 80 
 2.00 69 68 69 81 76 81 
 3.00 30 29 29 77* 81* 81 
 5.00 16 15 15 76 79 79 
 8.00 11 10 10 80 80 80 
 10.0 10 9 9 78* 81 81* 
r = ratio of the risk period to the observation period, 1,=v the proportion vaccinated, 
RI =  relative incidence to be detected, 1 =N sample size using formula (5.1) ,  

2 =N sample size  using formula (5.2) , 4N = sample size using formula (5.4) , 
1 =P observed power for 1N , 2 =P observed power for 2N , 4P = observed power 

for 4N . *Saw-tooth phenomenon. 
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Table 5.2 Empirical power for 90 per cent nominal value  
r  RI  1N  2N  4N  1P  

% 
2P  

% 
4P  

% 
0.01 0.10 688 562 571 95 90* 89* 
 0.50 1001 861 882 91 91* 90* 
 1.20 28641 29185 28993 90 90 90 
 1.50 5062 5279 5197 90 91 90 
 2.00 1453 1562 1517 88 89 90 
 3.00 450 505 480 86 89* 90* 
 5.00 152 180 166 87 91 91 
 8.00 68 85 76 91* 90* 90 
 10.0 48 61 54 88 90 89 
0.05 0.10 135 113 114 92 87 87 
 0.50 669 628 639 92 90* 89* 
 1.20 6026 6131 6094 90 90 90 
 1.50 1079 1122 1106 88 90* 91* 
 2.00 316 338 329 89* 90 89* 
 3.00 101 113 108 84 91 91 
 5.00 36 43 40 86 91 90 
 8.00 18 22 20 90 93 90 
 10.0 13 17 15 86 89* 93* 
0.1 0.10 66 56 57 94 87 89 
 0.50 341 323 328 92 90 92 
 1.20 3217 3268 3250 90 90 90 
 1.50 585 606 599 89 90 90 
 2.00 176 187 182 89 89* 90* 
 3.00 59 65 62 85 91 89 
 5.00 23 26 25 93* 89* 91 
 8.00 12 14 13 91* 94 90* 
 10.0 9 11 10 93* 91* 89 
0.5 0.10 12 12 11 92 92* 93* 
 0.50 91 91 91 91 91 91 
 1.20 1268 1268 1268 89 90 90 
 1.50 259 260 259 90 90 90 
 2.00 91 91 91 90 90 90 
 3.00 38 39 38 92 91* 92* 
 5.00 20 20 20 89 89 89 
 8.00 14 14 13 91 91 90 
 10.0 12 12 11 92 92 92 
r = ratio of the risk period to the observation period, 1,=v the proportion vaccinated, 
RI =  relative incidence to be detected, 1 =N sample size using formula (5.1) ,  

2 =N sample size using formula (5.2) , 4N = sample size using formula (5.4) , 
1 =P observed power for 1N , 2 =P observed power for 2N , 4P = observed power 

for 4N . *Saw-toothed phenomenon. 
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5.6 Sample size formula with age effect 

 

All the sample size formulae derived so far apply to a simplified situation in which 

there are no age effects. In practice, strong age effects may be present. Such age 

effects can have a big effect on study power, and must be taken into account in sample 

size calculations. We have seen so far that sample size formulae (5.1), (5.2), and (5.4) 

give accurate sample sizes in the simplified scenario. Expression (5.1) and (5.2) are 

based on binomial proportions, and thus cannot readily be extended to allow for age 

effects, since the likelihood then becomes product multinomial. However, sample size 

formula (5.4) based on the likelihood ratio test can be extended to allow for age 

effects. 

 

In line with the parametric case series models described in chapter 2, in which age 

effects are modelled using a step function, we shall assume that the age-specific 

incidence is piecewise constant. In practical applications, we have found this approach 

for specifying the age effects both convenient and flexible. 

 

5.6.1 Assumptions and notation 

 

We again consider a simplified scenario, but involving age effects. We assume that all 

individuals are followed over the same observation period, which covers J age groups 

of duration ,  0,1,2,..., 1.je j J= −  Suppose that the probability that an individual is 

exposed in age group j is .jp  The probability that an individual, randomly selected 

from the population, is exposed during the observation period is
1

0

.
J

j
j

v p
−

=

=∑   We 
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suppose furthermore that if an individual is exposed in age group ,j the post-exposure 

risk period, of length ,∗e is entirely contained within age group .j  This assumption 

greatly simplifies the calculations, by avoiding any overlaps. It implies that ∗ ≤ je e for 

all age groups 0,1,..., 1.j J= −  This should not be too restrictive in practice, at least 

when the risk period is short. 

 

Finally, let jα denote the logarithm of the age-specific relative incidence, relative to 

age group 0, so that 0 0.α =  We assume that these age effects are known. As before, 

let = eβρ denotes the relative incidence associated with the exposure, and β its 

logarithm. 

 

5.6.2 Sample size formula allowing for age effects 

 

The full derivation is given in Appendix 2. The sample size formula involves the 

following intermediate quantities. First, let jr denote the weighted ratio of time at risk 

to the overall risk period: 

                         1

0

,   0,1,..., 1.
j

s

j J

s
s

e e
r j J

e e

α

α

∗

−

=

= = −
∑

 

Note that if there are no age effects ( 0 for all )j jα = then ,=jr r the ratio of the risk 

period to the observation period defined in chapter 4 and section 5.2 of this chapter. 

Second, let jπ denote the probability of an individual exposed in age group j that an 

event arising in age group j occurs during the exposure period: 
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                        ,  0,1,..., 1.
1

j
j

j j

r
j J

r r

ρ
π

ρ
= = −

+ −
 

If there are no age effects, then =jπ π , the binomial probability defined in chapter 4. 

Finally let jv denote the probability that a case is exposed in age group :j  

                          

( )
( )

1

0
0

1
,   0,1,..., 1.                                                          (5.6)

1

j j j

j J

s s s
s

p r r
v j J

p p r r

ρ

ρ
−

=

+ −
= = −

+ + −∑
 

Note that if there is no association between exposure and outcome, so that 1,=ρ then 

,=j jv p the population proportion exposed. If there is an association, however, the 

age distribution of exposure in the cases will usually differ from that of the general 

population. If there is no age effect, then /j ev n n= from expression (4.3) of chapter 4. 

Now define the following constants  and :A B  

                          

( )

( )

1

0

2 1

0

2 log 1 ,

                                                                                                                                  (5.7)

1 .

J

s s s s
s

J

s s s
s

A v r e r

B v
A

βπ β

β π π

−

=

−

=

⎡ ⎤= − + −⎣ ⎦

= −

∑

∑
 

Note that when there are no age effects and all individuals are exposed (so 1v = ), then 

 reduces to the expression  and A A B reduces to the expression B  given in section 5.4. 

The total number of events required for 100 %γ  power at the 100 %α  significance 

level is  
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( ) ( )
2

1 / 2
.                                                                                          5.8e

Z Z B
n

A

α γ− +
=  

If there are no age effects, (5.8) reduces to expression (5.4). 

 

5.6.3 Sample size formulae for the number of cases 

 

So far we have presented formulae for ,n the number of events. To obtain a sample 

size formula for the number of cases, an estimate of the cumulative incidence over the 

observation period is required. Let Λ denote this cumulative incidence. Then under the 

Poisson model, the number of cases required (that is, the number of individuals with 

one or more events), cn is 

                            
1

.c

e
n n

−Λ⎛ ⎞−= ⎜ ⎟Λ⎝ ⎠
  

Thus cn n≤ . Generally, Λ is not known with any accuracy. In practice, most 

applications of the case series method are to situations where Λ is very small, in which 

case .cn n�  Furthermore, the independence of repeat events may be open to doubt. 

For these reasons, we would generally advise taking .cn n=  

 

5.7 Evaluation of sample size formula with age effects 

 

5.7.1 Simulation study 

 

We evaluated the sample size expression (5.8) as follows. As before, we assumed an 

observation period of 500 time units, but now partitioned into 5=J age intervals of 
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100 units. We fixed the age-specific proportions jp of the population exposed, and 

assumed that all individuals in the population are exposed, but varied the age effect: 

increasing, symmetric and decreasing. The parameter values we used are shown in 

Table 5.3 below. 

 

The risk period duration ∗e must be less than the shortest age group, and were set at 5, 

10, and 50 units. For comparability with Tables 5.1 and 5.2, these are reported as 

proportions of the overall observation period and are denoted r . Thus 

0.01,0.05 and 0.1.=r The values for ρ were the same as in the previous simulations, 

but here we only present results from the values of 0.5,1.5, 2,3,5,10=ρ . We evaluated 

the sample size for powers of 80 and 90 per cent, at 5 per cent significance level. In 

this situation, the combination of three values of r , six values of ρ , two powers, and 

three age effects required 108 different simulations; each involved 5000 runs. 

 

Table 5.3 Exposure and age effects used in the simulations. 
Age group j  Parameter 

0 1 2 3 4 
Proportion exposed, jp  0.35 0.30 0.20 0.10 0.05 

Age effect, jeα       

Increasing 1 2 3 4 5 
Symmetric 1 2 3 2 1 
Decreasing 1 1/2 1/3 1/4 1/5 
  
 
The sample sizes were calculated using expression (5.8) and were rounded up to the 

next integer. For each simulation, we randomly and independently allocated the 

exposure to an age group and the event to an age and exposure group combination. 

Since the simulations are conditional on an event occurring, we used the age-specific 

exposure probabilities defined by expression (5.6) to perform this allocation. We then 
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fitted the case series model with five age groups (and thus four age parameters), and 

carried out the likelihood ratio test of the null hypothesis 1.=ρ  The Monte Carlo 

standard error for the empirical power is about 0.57 per cent at 80 per cent power and 

0.42 per cent at 90 per cent power. 

 

5.7.2 Results 

  

The sample sizes and empirical powers are shown in Tables 5.4 and 5.5 for 80% and 

90% power respectively. Note that, since 1,  .ev n n= =  The empirical powers 

generally correspond closely to the nominal values, across the range of parameter 

values and age settings. There is one exception, namely the rather low (72-73 per 

cent) power obtained for 0.01=r when 10=ρ . This occurred only for nominal power 

of 80 per cent, but not for 90 per cent power, with age effects, but not when there are 

no age effects. We have no definitive explanation for this observation, but we suspect 

it might be due to confounding with age when the expected number of events in the 

risk period is very small, or to the distribution of the data. In practice, it is most 

unlikely that a design value of ρ as high as 10 would be used.  
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Table 5.4 Sample sizes and empirical powers for 80% nominal power 
Age effect 

Increasing Symmetric Decreasing 

 
 
 
 
r         ρ  

en  Power 
en  Power 

en  Power 

0.01 0.5 
1.5 
2 
3 
5 
10 

3267 
5219 
1509 
471 
161 
51 

81.2 
80.8 
78.2 
79.4 
79.9 
72.2 

2398 
3842 
1113 
348 
119 
38 

81.5 
79.1 
80.8 
79.0 
79.5 
73.1 

1825 
2936 
852 
268 
92 
30 

81.2 
77.6 
78.0 
79.9 
78.7 
72.5 

0.05 0.5 
1.5 
2 
3 
5 
10 

667 
1103 
324 
104 
38 
13 

80.2 
80.0 
78.9 
81.1 
77.3 
79.5 

491 
825 
244 
80 
29 
11 

81.5 
80.0 
78.9 
78.6 
77.2 
79.5 

379 
649 
193 
64 
24 
10 

80.6 
79.2 
78.8 
78.5 
78.2 
81.1 

0.1 0.5 
1.5 
2 
3 
5 
10 

343 
592 
177 
59 
23 
9 

78.9 
78.9 
80.3 
80.8 
78.8 
77.7 

254 
452 
137 
47 
19 
8 

79.4 
78.2 
79.8 
79.1 
79.4 
79.0 

200 
370 
114 
40 
16 
7 

78.6 
79.6 
80.2 
80.4 
78.8 
77.1 
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5.5 Sample sizes and empirical powers for 90 per cent nominal power. 
Age effect 

Increasing Symmetric Decreasing 

 
 
 
 
r                 ρ  

en  Power 
en  Power 

en  Power 

0.01 0.5 
1.5 
2 
3 
5 
10 

4276 
7073 
2062 
651 
224 
72 

90.6 
89.7 
91.1 
89.6 
89.9 
89.9 

3139 
5207 
1520 
481 
167 
54 

89.0 
89.3 
88.8 
89.5 
91.1 
89.6 

2390 
3978 
1163 
369 
128 
42 

91.3 
89.5 
90.2 
89.7 
90.7 
88.7 

0.05 0.5 
1.5 
2 
3 
5 
10 

874 
1493 
442 
143 
52 
19 

89.7 
90.3 
90.2 
91.2 
88.2 
88.9 

644 
1116 
332 
109 
40 
15 

90.4 
89.5 
88.9 
89.9 
91.7 
90.7 

497 
877 
263 
87 
33 
13 

90.4 
89.2 
89.5 
87.4 
88.0 
89.5 

0.1 0.5 
1.5 
2 
3 
5 
10 

450 
800 
241 
81 
31 
12 

89.7 
89.3 
89.4 
90.8 
90.5 
87.3 

334 
611 
186 
64 
25 
11 

89.9 
89.9 
90.6 
90.5 
90.1 
90.7 

263 
498 
154 
54 
22 
10 

90.2 
89.2 
89.5 
90.2 
89.7 
89.1 

 

5.8 Conclusion 

 

Sample size formulae for the self-controlled case series method have been discussed 

in chapter 4 as well as in chapter 5. In chapter 4, we saw that the sample size formula 

published by Farrington et al [3] was not accurate, neither were the sample size 

formulae based on the distribution of β̂  with both first and second order 

approximations, or the sample size formula based on the binomial proportion without 

continuity correction or variance stabilizing transformation. In this chapter, we have 

shown that sample size formula based on the binomial with continuity correction and 

that with arcsine variance stabilizing transformation are accurate. Equally accurate is 

the sample size formula based on the signed root likelihood ratio statistic which can 
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be generalized to take account of age effects. We have seen that the type of age effects 

has a big impact on the sample size required, as shown in Table 5.5. For example (See 

also Musonda et al [44]), suppose the observation period includes the ages 366-730 

days, divided into 4 age groups 3J =  with periods of lengths 0 1 2 91e e e= = = days, 

and 3 92e =  days. Suppose we took the proportions vaccinated in each of the age 

intervals to be 0 1 2 30.6, 0.2, 0.05, 0.05.p p p p= = = =  Further take the age effects to 

be 0 31 21, 0.6, 0.4,e e e eα αα α= = = =  and the risk period 42∗ =e days, and 

set 1 / 23, 1.96 and 0.8416−= = =Z Zα γρ  for 80 per cent power to detect a relative 

incidence of 3 at the 5 per cent significance level. With these values, we find 37cn = , 

but if we ignored the age effect, we would obtain 45cn = . Thus it is important to 

allow for such age effects in calculating the sample size. In conclusion, we 

recommend the sample size formula based on the signed root likelihood ratio, as 

shown in expressions (5.4) and (5.8). 

 

Our empirical power calculations were based on the likelihood ratio test. In practice, 

statistical significance is sometimes assessed by calculating the 95 per cent confidence 

interval for the relative incidence, and observing whether this confidence interval 

includes 1.We also evaluated our recommended sample size formula using this second 

criterion. The empirical powers were generally close to the nominal values, except for 

large relative risks and or very short risk periods when such confidence intervals can 

be markedly non-central as shown in chapter 3. 

 

In calculating the sample size allowing for age effects, we assumed that the age 

effects were known, so as to obtain a one-parameter likelihood. In practice, the age 
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effects must be estimated. We had expected this to have some bearing on the results, 

in that some information in the sample is used to estimate the age effects. In the event, 

this effect is small. 

 

A limitation for sample size formula (5.8) is the requirement that the risk period is 

shorter than the age groups involved. Another is that we have assumed that there is a 

single risk period. In practice, it is common to use several, usually rather short, risk 

periods. However, it is often possible to select a single, short risk period of special 

importance, on which to base the sample size calculations. If long risk periods are 

required in situations where age effects must be allowed for, our proposed sample size 

formula may not apply without further modification. 

 

We recommend the sample size formula based on the signed root likelihood ratio 

statistic for use both when there is no age effect and where there is an age effect. In 

particular, the sample size formulae in this chapter help to emphasize the importance 

of taking age into account at the design stage.  
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Chapter 6 

 

Application of the self-controlled case series method in surveillance 

 

6.1 Introduction 

 

In this chapter we aim to describe how we can use the self-controlled case series 

method in prospective surveillance. In section 6.2, we briefly describe the use of 

surveillance systems to monitor vaccine safety and relate this to the self-controlled 

case series method. We also identify the possible problems of using the self-controlled 

case series method for prospective surveillance. The background and review of 

various statistical methods used for surveillance are given in section 6.3. Section 6.4 

describes the sequential probability ratio test (SPRT) and the theory behind the SPRT 

is given in section 6.5. Description of the application of the SPRT is given in section 

6.6. Section 6.7 explores using the self-controlled case series adjusting for age. In 

section 6.8, we show results from a simulation study demonstrating possible 

parameter values for a surveillance system, and conclusions are drawn in section 6.9. 

  

6.2 Surveillance systems for adverse events 

 

Two examples of surveillance systems for vaccine–associated adverse events are: the 

Yellow Card system in the UK and  the Vaccine Adverse Event Reporting System 

(VAERS) in the US [61]. The Yellow Card Scheme was introduced in 1964 to 

provide a straightforward route for a doctor or dentist and later any member of the 
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public to report a suspicion that a medicine could have harmed a patient. The Yellow 

Card Scheme (http://www.yellowcard.gov.uk) is run by the Medicines and Healthcare 

products Regulatory Agency (MHRA).  

 

The Vaccine Adverse Event Reporting System (http://vaers.hhs.gov) is a cooperative 

program for vaccine safety of the Centres for Disease Control and Prevention (CDC) 

and the Food and Drug Administration (FDA) in the US. Like the Yellow Card 

system in the UK, VAERS collects information about adverse events that occur after 

the administration of US licensed vaccines. A similar scheme on the international 

level is conducted by the World Health Organisation (WHO) at the Uppsala 

Monitoring Centre [62].  

 

The data collected in these systems are not independent of the exposure since only 

events occurring after exposure to the drug are collected. Data are usually collected 

from a mixture of populations, and there is no denominator data. There may be no 

confirmation of the reported adverse events. Such data sets may suffer from 

underreporting and differential reporting [63, 64]. There is no control group for 

comparison of adverse event rates [65, 66]. Over reporting may also occur because 

some reported conditions might not meet standard diagnostic criteria [64]. There is 

also lack of information on background incidence of adverse events in the general 

population and information concerning the total number of doses of vaccines or 

vaccine combinations actually administered. For these reasons surveillance systems 

such as VAERS and Yellow Card Scheme cannot be readily used to determine 

whether associations between vaccines and reported adverse events are causal. 
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Surveillance system such as VAERS and Yellow Card Scheme are nevertheless useful 

for generating hypotheses to be tested in other settings such as the Vaccine Safety 

Datalink (VSD), or through specially designed epidemiological studies [33, 67].  

 

In this chapter and the next we discuss how the self-controlled case series method can 

be applied to the surveillance of adverse events following vaccination. The aim is to 

obtain better evidence of causality than available from systems such as the Yellow 

Card or VAERS, while remaining in a prospective setting.  

 

There are possibly two ways in which the self-controlled case series method can be 

applied for surveillance. These are:  

 

1. Prospective surveillance of a new vaccine. 

2. Long term surveillance to identify changes in the performance of one or 

several existing vaccines. 

  

In the first situation, there is a specific hypothesis to be tested, for example relating to  

intussusception following the introduction of a new rotavirus vaccine [68, 69]. In the 

second situation, one might be interested in monitoring a range of possible exposures, 

not a single one, to check that none of the vaccines in current use are associated with 

some adverse outcome. In this situation, monitoring may concern several outcomes 

with no specific hypotheses. For the second scenario, one needs to protect against 

false positive alarms more than for the first scenario.  
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Both the above scenarios can use data that are centrally collected in one or several 

databases, for example the Hospital Episode Statistics (HES) data, UK General 

Practice Research Database (GPRD), immunisation data which is independent from 

clinical records such as the Vaccine Safety Datalink (VSD) database, data from 

Patient Administration System (PAS), and Coded Clinical Records (CCR). Data 

collected routinely as in these databases are the best to use because ascertainment is 

likely to be independent from the exposure. The main difficulty is how to use the self-

controlled case series method, which is a retrospective design, in a prospective 

surveillance context. 

 

6.3 Background and review of some surveillance methods 

 

Statistical methods can play an important role in detecting changes in many processes, 

including mortality and adverse event rates. Some surveillance methods have an 

established history of use with health care, while there is growing interest in others 

such as statistical process control (SPC) methods. The retrospective use of SPC by 

Spiegelhalter et al [70] provides an excellent example of the potential role that risk-

adjusted control charts could have played in earlier detection of higher mortality rates 

in the Bristol Royal Infirmary and in the general practice of Harold Shipman. 

 

Statistical control charts were first developed in the 1920s by Walter Shewhart at Bell 

Laboratories [71] and have been widely used by Deming [72]. Shewhart and Deming 

independently recognised the value of these methods for detecting statistical changes 

in many applications, though they were initially intended for use in industrial and 

chemical processes.  As early as 1942, Deming [73]  recognised their potential value 
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for disease surveillance and rare events. Important health care concerns in which 

control charts have been shown to be effective include surgical site infections, adverse 

drug events, needle stick injuries, and ventilator-associated pneumonia [74]. 

 

Some studies have attributed the growing use of SPC in the medical context to the 

staggering incidence and cost of medical mistakes [75], care induced injury, and 

hospital acquired infections. For example it is reported [75] that in the US alone, 

between 770 000 to 2 million patients are injured per year, 44 000 to 180 000 deaths, 

and the cost of all these accidents/incidents is estimated to be about $8.8 billion 

annually [76-78].  

 

Surveillance systems such as the Yellow Card and VAERS all make use of suitable 

statistical methods to identify possible signals. For example measures of 

disproportionality including Proportional Reporting Ratio (PRR), Reporting Odds 

Ratio (ROR),  and Yule’s Q, along with more complex Bayesian methods are 

currently applied in various national spontaneous reporting centres [79-82].       

 

Another approach for continuous systematic review of all combinations of drugs and 

suspected adverse reactions (ADRs) reported to a spontaneous reporting system to 

optimize signal detection makes use of Bayesian methods. This works by relating the 

prior and posterior probabilities before and after linking databases. It is currently 

being used by the Uppsala Monitoring Centre (Bayesian Confidence Propagation 

Neural Network analysis BCPNN) [83-85].   
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Cumulative monitoring approaches based on control charts of different kinds are 

widely used. For example it is well known [75] that the simplest types of statistical 

control charts, called Shewhart charts, perform fairly well for detecting moderate-to-

large rate changes in the parameter of interest. In some industrial applications, more 

advanced tools such as sequential probability ratio test (SPRT), cumulative sum 

(CUSUM) charts are used to detect smaller changes, to monitor low rates, or in 

situations where sufficiently large sample sizes are not available. Examples of health 

care CUSUM applications include surveillance of seasonal influenza [86, 87] , 

community Salmonella [88], and fever curves in neutropenic patients.  Various new 

SPC methods have been developed for non-standard applications dealing with rare 

events, infectious diseases and other event that naturally occur in clusters, 

overdispersion, naturally cyclic behaviour, and risk adjustment [70].  Related SPC 

methods have also been developed to handle non-homogenous event in 

manufacturing, such as for different production lines.  

 

Another motivation for cumulative monitoring approaches is to accommodate rare 

events that otherwise would require large samples to yield adequate statistical 

sensitivity. SPRTs and CUSUMs are excellent for this purpose, and several other SPC 

methods also have been developed for rare events. Many of these are based on some 

variation of the idea of monitoring the number of cases or time between adverse 

events rather than the more traditional approach of monitoring the number of events 

or deaths within a fixed time period or accumulating sample size [89, 90].  

 

The SPRTs and CUSUMs are the most adaptable cumulative monitoring methods to 

use with the self-controlled case series method. This is because they are based on the  
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likelihood ratio. We adapt them by using the likelihood of the self-controlled case 

series method. In this chapter, we shall concentrate on the SPRTs and  in chapter 

seven, we will describe how to use the CUSUMs.  

 

Charts derived from the sequential probability ratio test have been widely used in 

industry to monitor process performance. The SPRT is used both when the monitoring 

is continuous and items can be inspected one by one, and when items are inspected in 

a group after a fixed time interval. Studies have shown that charts based on the SPRT 

will signal an out-of-control process earlier than either the Shewhart p-chart or the 

CUSUM chart [91]. Recently there has been increased attention paid to the use of the 

CUSUM and SPRT charts in a medical context [74, 88, 92]. The SPRT is the most 

powerful method for discriminating  between two hypotheses [70, 93], and was 

recommended well over 40 years ago in a medical context for clinical trial and 

clinical experiments [94, 95]. In the next section, we describe charts derived from the 

SPRT by first looking at the theory behind SPRT. 

   

6.4 The sequential probability ratio test (SPRT) 

 

Formal statistical methods for sequential analysis were developed in 1943 

independently by Barnard in the UK and Wald in the US [93, 96]. Suppose we are in a 

situation where we have two hypotheses, the null hypothesis 0H and the alternative 

hypothesis 1H . Interest is on deciding whether to accept the null hypothesis or reject 

the null hypothesis (hence accepting the alternative). The idea behind sequential 

testing is that we collect observations one at a time; when observation i iX x=  has 

been made, we choose between the following options: 
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• Accept the null hypothesis 0H  and stop observation. 

• Accept the alternative hypothesis 1H  and stop observation. 

• Defer decision until we have collected another piece of information 1.iX +  

 

The challenge of course is to find out when to choose the above options. To do that, 

one has to control for two types of error: 

 

{ }1 0Accepting when  is trueP H Hα =  (Type I  error), and 

 

{ }0 1Accepting  when  is trueP H Hβ =  (Type II  error).  

 

Note that it is common in this context to treat 1H  and 0H  symmetrically. More 

formally, suppose we consider a simple hypothesis 0 0:H θ θ= against a simple 

alternative 1 1:H θ θ= . The standard likelihood ratio test has critical region of the form  

 

1 1

0 1

( ; ,..., )
log

( ; ,..., )
n

n
n

L X X
Z K

L X X

θ
θ

= >     

for some constant K  and 1,..., nX X  are n independent observations on the random 

variable X . The expression 1 1( ; ,..., )nL X Xθ represents the likelihood when 1H is true 

and the expression 0 1( ; ,..., )nL X Xθ represents the likelihood when 0H is true. Note 

that assuming independence the log likelihood ratio nZ is the cumulative sum 
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Now consider 1 2, ,...X X being successive observations obtained sequentially. Wald’s 

[45] sequential probability ratio test has the following form: 

 

• If  ( )lognZ A≥ , decide that 1H is true and stop; 

• If ( )lognZ B≤ , decide that 0H is true and stop; 

• If ( ) ( )log lognB Z A< < , collect another observation to obtain 1nZ + , 

where A and B are two constants such that ( ) ( )log logB A< . The constants A and 

B are to be determined so that the test will have the prescribed strength ( ),α β . 

 

It can be shown that the SPRT is optimal [45, 75, 91, 92] in the sense that it 

minimizes the average sample size before a decision is made among all sequential test 

which do not have larger error probabilities than the SPRT. An essential feature of the 

sequential test is that the number of observations required by the sequential test 

depends on the outcome of the observations and is, therefore, not predetermined, but a 

random variable [45]. This is because at any stage, the decision to terminate the 

process depends on the observations made so far.    
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6.5 Theoretical properties of the SPRT 

 

6.5.1 The relations between the quantities , , ,A Bα β  in an SPRT 

 

Following Wald’s [45] derivation, suppose we let ( , )f X θ denote the density of the 

random variable X under consideration for some parameter θ . As before let 0H be 

the hypothesis that 0=θ θ , and 1H the hypothesis that 1=θ θ . We can thus denote 

0( , )f X θ as the distribution of X given that 0H is true and by 1( , )f X θ  is distribution 

when 1H is true. Successive observations on X shall be denoted by 1 2, ,...,X X . 

 

Further suppose for any integer value m , the probability that a sample 1 2, ,..., mX X X is 

obtained is given by 

                 1 1 1 1( , )... ( , )=m mp f X f Xθ θ  when 1H is true, 

 and by 

                  0 1 0 0( , )... ( , )=m mp f X f Xθ θ  when 0H is true. 

 

Suppose we say that the sample 1 2( , ,..., )nX X X  is of type 0 if  

 

    1 1 1 1 1

0 1 0 0 0

( , )... ( , )
 for 1,..., 1 and 

( , )... ( , )
m m n

m m n

p f X f X p
B A m n B

P f X f X p

θ θ
θ θ

< = < = − ≤ . 

 

 

Similarly, we shall say a sample 1( ,..., )nX X is of type 1 if  
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  1 1 1 1 1

0 1 0 0 0

( , )... ( , )
 for 1,..., 1 and 

( , )... ( , )
m m n

m m n

p f X f X p
B A m n A

P f X f X p

θ θ
θ θ

< = < = − ≥ . 

 

Hence it follows from that a sample of type 0 leads to the acceptance of 0H  and a 

sample of the type 1leads to the acceptance of 1H . For any given sample 

1( ,..., )nX X of type1, the probability of obtaining such a sample is therefore at least A  

times as large under hypothesis 1H as under 0H . As shown by Wald [45], the 

probability measure of the totality of all samples of type 1is the same as the 

probability that the sequential process will terminate with acceptance of 1H . But the 

latter probability is equal to α when 0H is true and to 1− β  when 1H is true. This is 

by definition of  and α β  and because the probability that the sequential process will 

eventually terminate is one. Hence,  

                    1   − ≥ Aβ α . 

The inequality above can be written as  

                  ( )1
                                                                                               6.1

−≤A
β

α
 

and so 
1− β

α
 is an upper limit for .A  

 

Similarly, a lower limit for B can be derived as follows. 

 

 For any given sample ( )1,..., nX X of type 0 , the probability of obtaining such a 

sample under 1H is at most B times as large as the probability of obtaining such a 

sample when 0H is true. Thus, also the probability of accepting 0H is at most B times 
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as large when 1H is true as when 0H is true. Since the probability of accepting 0H is 

1−α when 0H is true and β when 1H is true, we obtain the inequality 

                ( )1     ≤ − Bβ α . 

It follows that 

( )                                                                                                                6.2
1

≥
−

B
β

α

and thus 
1−

β
α

is a lower limit for B . 

The inequalities ( )6.1 and ( )6.2 have been derived under the assumption that the 

successive observations 1 2, ,..., etcX X , are independent. It can be shown [45] that the 

validity of the inequalities ( )6.1 and ( )6.2 is not restricted to the case of independent 

observations. They are generally valid also for dependent observations. 

 

6.5.2 Calculating the constants A  and B  

 

Suppose that we wish to design a test procedure of strength ( ),α β . Then our problem 

is to determine the constants A and B such that the resulting test will have the desired 

strength ( ),α β . Let us denote by ( ),A α β and ( ),B α β  the values of A  and B , 

respectively, for which the test has the required strength ( ),α β . The exact 

determination of the values ( ),A α β  and ( ),B α β  is usually very laborious [45]. 

However, the inequalities ( )6.1  and ( )6.2  permit an approximate determination of 

 and A B which will suffice for most practical purposes. From ( ) ( )6.1  and 6.2 , it 

follows that   
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( ) 1
,   

−≤A
βα β

α
 and ( ),   

1
≥

−
B

βα β
α

. It can be shown [45] that for most practical 

purposes, the constants  and A B  are approximately equal to: 

1
  

−
�A

β
α

and   
1−

�B
β

α
.  

Using approximate values of  and A B instead of exact values results in some error in 

the Type I and Type II  probabilities. Let us denote by  and ′ ′α β  the resulting 

probabilities of errors of Type I and Type II  respectively for using approximate 

values of  and .A B  From ( ) ( )6.1  and 6.2  it follows that 

             

( ), and                                                                                                 6.3
1 1

α α
β β
′

≤
′− −

  

( ) .                                                                                                       6.4
1 1

β β
α α
′

≤
′− −

 

 

It follows from the above that 

( ) and                                                                                                        6.5
1

αα
β

′ ≤
−

 

( ) .                                                                                                            6.6
1

ββ
α

′ ≤
−

 

Multiplying ( )6.3 by ( )( )1 1 ′− −β β and ( )6.4 by ( )( )1 1 ′− −α α and adding the two 

inequalities, we obtain 

               

( ).                                                                                                     6.7α β α β′ ′+ ≤ +  

The inequalities ( )6.5 , ( )6.6 , and ( )6.7 give useful upper limits for  and .′ ′α β  Wald 

[45] argued that since in practical applications, the values  and α β will usually be 
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small, probably in the range 0.01 to 0.05, thus  and 
1 1− −

α β
β α

 will be very nearly 

equal  and α β , respectively. Inequalities ( )6.5 and ( )6.6  indicates that the amount 

by which ′α may exceedα , or ′β may exceed β is small and can be neglected for 

practical purposes. In fact, inequality ( )6.7 implies that at least one of the inequalities 

 and ′ ′≤ ≤α α β β must hold. In other words, by using the approximate values of 

( ) ( ),  and B ,A α β α β instead of exact values of ( ) ( ),  and ,A Bα β α β , respectively, at 

most one of the probabilities  and α β may be increased. 

 

Wald [45] concluded that the use of approximate values of ( ),A α β and ( ),B α β , 

instead of exact values of ( ),A α β  and ( ),B α β respectively,  cannot result in large 

increase in the value of either  or .α β  This means, for all practical purposes the test 

corresponding to 
1−=A

β
α

 and 
1

=
−

B
β

α
 provides at least the same protection 

against wrong decisions as the test corresponding to the use of the exact values of 

 and A B .  

 

The other possible consequence of using approximate values of ( ),A α β  and 

( ),B α β  instead of exact values is that this may result in an appreciable decrease of 

either or both error probabilities. If this were so, it would mean only that the test 

based on the approximate values 
1−=A

β
α

 and 
1

=
−

B
β

α
 would provide a better 

protection against wrong decisions than the test based on the exact values. The only 

possible disadvantage is an appreciable increase in the number of observations 



 142 

required by the test. But this has been theoretically investigated [45] and it has been 

shown that such an increase in the number of observation is only slight and of no 

practical consequence. Thus the test based on the approximate values 
1−=A

β
α

 and 

1
=

−
B

β
α

 serves the purpose just as well, and the determination of exact values is of 

little practical importance. 

         

The ideas developed above relate to a situation in which a decision has to be made 

with observations taken singly, that is, by item-by-item inspection. An interesting 

question is therefore whether the sequential test works when items are inspected in 

groups, for example when items are inspected at a particular fixed time interval. Some 

researchers [91, 97] argue that the threshold for grouped data should be adjusted to 

take account of the grouping. But Wald [45] showed that taking observations in 

groups and applying the SPRT should lead to the same conclusions as item-by-item 

inspection. Wald’s theoretical argument on using the SPRT with grouped data 

concluded that, for all practical purposes, grouping does not decrease the protection 

against wrong decisions provided by the test. Hence we shall use grouped data with 

 and A B calculated as if the test was based on item-by-item inspection and be re-

assured by Wald’s findings, as used by Spiegelhalter et al [70], that we ought to make 

the same decisions as we would if we had singly collected data. Our strategy in any 

case will be to test performance by simulation.  
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6.6 Application of the SPRT to the self-controlled case series method. 

 

6.6.1 Surveillance scenario 

 

In this section, we introduce a hypothetical surveillance system which is set up to 

monitor the performance of a new vaccine, for example the introduction of a new 

rotavirus vaccine (see chapter 8). We shall describe how the self-controlled case series 

method can be used with the SPRT. For definiteness, we shall take the adverse event 

of interest to be intussuscetption in children aged under 2 years [68, 69, 98].  

 

Cases of intussusception in children aged less than two years are reported to a central 

database. At regular time intervals (say every 6 months, or every 12 months) the 

vaccination records of the cases notified in the previous 6 or 12 monthly period are 

ascertained using a mechanism that is independent of the occurrence of the event. 

Such data might be obtained from databases such as hospital records, the GPRD or 

VSD [99]. 

 

The self-controlled case series method is then applied at the end of each successive 6 

or 12-month calendar time interval. We call this interval the monitoring interval. The 

observation period for each case with an event during that time period includes all 

time spent in the defined age groups (in our example, 0-2 years) within the monitoring 

interval. If the adverse event is a contra-indication for subsequent vaccination, the 

observation period is further constrained to begin with vaccination. The risk period (in 

our example, this might be 2 weeks post-vaccination) will have been defined prior to 
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the start of surveillance. In what follows we assume for simplicity that there is a 

single risk period and that each child receives a single vaccine dose.   

  

In the self-controlled case series method, fixed covariates are controlled for as was 

shown in chapter two. For simplicity we shall assume that there is no age effect.   

 

We have two hypotheses: a null hypothesis 0H corresponding to no association, hence 

the relative incidence 0 1=RI , and 1H  corresponding to a relative incidence 

(say, 1 2=RI ) that is deemed important to detect. Note that, 0 1, ,  and RI RIα β have to 

be defined in advance. The log-likelihood ratio is then calculated at the end of each 

fixed time interval. 

 

From chapter two, the log-likelihood with no age effect is 

 

( ) exp( )
log  

exp( )

⎛ ⎞
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where i  denotes individuals, and the risk period indexed by k  with 

00 if unexposed and 0

1 if exposed
k

β =⎧
= ⎨
⎩

 .  

The symbols ,ik ike n  respectively denote length of time at risk and number of events 

experienced by an individual i in risk period .k    

 

Under 0H , 0 0.=β  Let 1β  denote the value of β under 1H . Thus 

0 0=β and 1 1log( )= RIβ . Now let ,ikte iktn  denote, respectively, the time at risk and 
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number of events experienced by case i in risk period k during the tht monitoring 

interval. Also let 0 1,t tL L denote the likelihoods under 0H and 1H , respectively, for time 

interval .t   

 

It follows that: 
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Hence 

 

( ).1 1 . 0 1 1log( ) log                                                        (6.8)t t i t i t i t
i

n RI n RIω ωΛ = − +∑  

where 
1

ikt
ikt

iot i t

e

e e
ω =

+
is the proportion of time spent by case i  in exposure category k  

during the tht monitoring interval.  

 

In the simulations that follow we shall assume 0 1i t rω = −  and 1i t rω = . Then (6.8) 

above reduces to: 
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( )1
.1 1 .. log 1                                                                          (6.9)t t tn n r e rββΛ = − − +   

 

where .1tn  is the number of events during the monitoring interval (t) that occurred in 

the risk period, ..tn  is the baseline incidence of the number of cases arising in the 

monitoring interval (t) and r is the ratio of the risk period to the observation period.   

 

The SPRT chart involves plotting the pair ( ), tt Z  

                  

( )1 ,   1, 2,3,...                                                                                   6.10t t tZ Z t−= + Λ =     

at the tht  monitoring interval, where 0 0Z =  and 

( )11
.1 1 ..

0

log log 1t
t t t

t

L
n n r e r

L
ββ

⎛ ⎞
Λ = = − − +⎜ ⎟

⎝ ⎠
 is the sample weight assigned to 

monitoring interval t . 

 

In the SPRT chart, sampling should continue if the quantity tZ  lies between two 

thresholds log( ) and log( )A B . When tZ exceeds ( )log A , stop and reject 0H in favour 

of 1H and vice versa when tZ is less than ( )log B  . Thus the boundaries take the form 

of horizontal lines.   

 

6.6.2 Specifications in the SPRT chart 

  

One of the most important specifications before carrying out such a surveillance 

exercise concerns values of  and α β . The sizes of  and α β  should reflect the costs of 

making the two types of error. For example, if we wish to avoid falsely identifying an 
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adequate vaccine as being positively associated with an adverse outcome then 

α should be made very small, whereas if we consider it a serious mistake to miss a 

poor vaccine which is positively associated with an adverse outcome, then β  should 

be made small. Both errors are serious, so we adopt a convention of using 

equal  and α β . Spiegelhalter [70] advocates that instead of choosing a single value 

for  and α β , a set of horizontal lines can be drawn on the chart to indicate different 

degrees of urgency: for example, a monitoring study might use 0.1= =α β  as an 

‘alert’ threshold and a more stringent 0.01= =α β  for ‘alarm’. Table 6.1 below gives 

some possible thresholds for various values of  and α β . 

Table 6.1 Thresholds for the SPRT for different values of α and β  
α   β  Lower threshold 

          log( )B  
Upper threshold 
         log( )A  

0.05 
 

0.01 
 

0.01 
 

0.02 
 

0.005 
 

0.001 

0.05 
 

0.01 
 

0.02 
 

0.01 
 

0.005 
 

0.001 
 
 

-2.94 
 

-4.60 
 

-3.90 
 

-4.58 
 

-5.29 
 

-5.91 
 
 

2.94 
 

4.60 
 

4.58 
 

3.90 
 

5.29 
 

5.91 
 

 
It is also possible to set up several SPRT surveillances in different countries or 

institutions (hospitals or GP practices).  If that were to be the case, more stringent 

boundaries may be appropriate because of the many comparisons being made. For 

example if we had 10 centres on surveillance, of 10 centres performing normally, we 

would expect one to cross the ‘alert’ boundary by chance alone. Some authors [70] 

propose a Bonferroni-like adjustment, for example when monitoring n   institutions, 
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using values of  0.1/ nα β= =  and 0.01/ nα β= =  for ‘alert’ and ‘alarm’ 

respectively. 

 

The original idea of the SPRT as conceived by Wald [45] was designed to carry out a 

test of hypothesis 0H versus the alternative 1H and then decide either to terminate 

because the threshold has been crossed or continue observing because the threshold 

has not been crossed. For long term surveillance we could modify the idea so as to 

restart the procedure when, say, we cross the lower boundary and so are confident 

there is no increase in the relative incidence of an adverse outcome. Modifying an 

SPRT in this way has the advantage that it is not possible to build up excessive 

‘credit’ and so gains sensitivity changes in performance [70], but also has the 

disadvantage that the strict interpretation of  and α β is lost. Such a loss is not too 

serious if the surveillance system as described here is only an aid to monitoring which 

should eventually trigger remedial action such as investigating by conducting a proper 

retrospective study to confirm or reject the ‘signal’ detected. Another variant is to 

introduce a third, vertical, boundary which effectively places a time limit on the 

surveillance. The rationale for using a third vertical boundary relate to the context in 

which we envisage to use the SPRT, namely focussed surveillance of a new vaccine. 

In such a situation it is not appropriate to wait indefinitely for evidence of safety or 

lack of it. Thus it is appropriate to build in a maximum surveillance time, and design 

the system so as to have a high probability of not hitting this vertical boundary. In the 

simulation study whose results and procedure is reported in section 6.8, we used this 

approach.  
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6.7 Adjusting for age in the SPRT 

 

Both adverse events and vaccination are often highly age-dependent. Hence it is 

important to adjust for age. One way to control for age in the SCCS method could be 

to use profile likelihood where we profile out the age parameters as nuisance 

parameters [100].  

 

Thus tZ  becomes 
( )
( )

1 1 1 11
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where  profile likelihood for L β=�  (the logarithm of the relative incidence) having 

profiled out the age parameter. 

 

There are three possible ways in which the age parameter could be profiled out within 

the surveillance system described earlier, and these are as follows: 

 

1) First obtain the age parameter ( )α̂ β  values for the first monitoring interval, 

or for a baseline period, and keep these fixed thereafter or,  

2) Re-estimate the age  parameter ( )α̂ β  separately within each monitoring 

interval  or, 

3) Re-estimate the age parameter ( )α̂ β  at each monitoring time interval using 

all previous data. 
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We have left the investigation of these ideas about controlling for age for future 

research. In the next section we present results from simulations showing how the 

SPRT would work in a simplified scenario without controlling for age.  

 

6.8 Simulation study: evaluating the performance of the case series SPRT  

 

6.8.1 Description of the surveillance scenario 

 

Let us assume that we have set up a surveillance system as described in section 6.6.1 

to monitor a new vaccine every six months. In the surveillance system, the numbers of 

cases of a particular adverse outcome are collected at a central reporting centre. Note 

here that the monitoring interval can be of any length depending on prior knowledge 

of a particular vaccine being monitored.  

 

We decided on a surveillance period of 10 years. This 10-year period determines the 

third vertical boundary discussed above. It is used primarily for design purposes, as 

we require that there should be good power to detect a problem within this period. In 

practice the surveillance could continue beyond this boundary. The choice of 10 years 

is arbitrary and could be varied according to requirements. In what follows, ‘power’ 

refers more precisely to operational power, namely the probability of detecting a 

genuine problem before the vertical boundary is reached. We carried out simulations 

for various lengths of surveillance periods, but here we only present results from a ten 

year surveillance period.  
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Recall that the SPRT chart involves plotting the pair ( ), tt Z                

( )1 ,   1, 2,3,...                                                                                6.10t t tZ Z t−= + Λ =  

where 0 0Z = , and t  counts the monitoring interval. For the results presented here, we 

used a six months monitoring interval (for simplicity, all ‘months’ contain 4 weeks 

and all ‘years’ 48 weeks). 

 ( )11
.1 1 ..

0

log log 1t
t t t

t

L
n n r e r

L
ββ

⎛ ⎞
Λ = = − − +⎜ ⎟

⎝ ⎠
 is the sample weight assigned to 

monitoring interval t , where .1tn  is the number of events during the monitoring 

interval that occurred in the risk period, ..tn  is the number of events arising in the 

monitoring interval and r is the ratio of the risk period to the observation period. The  

risk period was varied: we used 1, 2 and 4 weeks. A range of relative incidences to be 

detected were investigated but here we only present results from relative incidence of 

1.5, 2, 3, 3.5, 4, and 5. 

It is important to distinguish between two uses of the relative incidence in the 

simulation. We shall denote 1RI eβ=  the design value, that is, the value used in the 

SPRT. In addition, we shall denote 2
2RI eβ=  the actual value used to generate the 

data. The values of 2RI  included 1, 1.5, 2, 3, 3.5, 4, and 5.  

    

We used a random number generator using SAS program version 8.2 [101] to 

generate the total number of cases in each monitoring interval arising from a Poisson 

distribution: 

         ( ).. Poissontn λ�   



 152 

where the underlying rate λ  was fixed at one of the following values:  

5,10,20,50λ = .  

 

The numbers of cases arising in the risk period were generated using the binomial 

distribution with the expression: 

 

             .1 ..( , )t tn Binomial n π�  

where 
2

2 1

e r

e r r

β

βπ =
+ −

is the probability of a case being in the risk period. 

 

We simulated a ten year surveillance period with six month monitoring time interval. 

So, if the process did not give any signal, we expect a total of 20 inspections in which 

the value of the SPRT is calculated every six months. For each combination of 

parameters we repeated the procedure 2000 times. We call a set of 2000 simulations a 

run. In each run, we observed the ability of the surveillance system to detect a 

particular relative incidence by finding the proportions of occasions on which the 

upper, lower and vertical thresholds were crossed. To check the speed of response of 

the surveillance system, we calculated the average time at which a particular boundary 

was crossed for those simulations in which the boundary was crossed.  

 

Figure 6.1 below gives an example of the output. The cumulative value of SPRT is 

plotted at each monitoring interval. We see three realisations of the process, one in 

which the observed number of cases arising in each six month monitoring interval 

leads to the acceptance of alternative hypothesis,  that the relative incidence is 5; this 
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happens in the second year. In such a situation, monitoring would have to be stopped 

and further investigations carried out.  
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Figure 6.1. Example of three realizations with relative incidence 5, ratio of the risk 

period to the observation period 
1

, 5, 0.01
6

= = = =r λ α β   

 
The lower path is an example of realisation in which the process leads to the 

acceptance of the null hypothesis which also happens in the second year. The middle 

path is a realisation which does not lead to any signal all the way up to the end of the 

surveillance period (ten years). The numbers in the square brackets in Figure 6.1 

represent the total number of events arising in the six month time interval and the 

number of events in the risk period. The nominal Type I and Type II errors were both 

set at 0.01.  
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6.8.2 Simulations based on the design values 

 

Tables 6.2, 6.3, 6.4 below show results from the simulation with one week risk period, 

two weeks risk period, and one month risk period, for a  range of relative incidences 

and different values of the baseline incidence λ , the mean number of cases per 

monitoring interval. We note some patterns in the results. The patterns noted can be 

described with respect to the risk periods whether short (Table 6.2 r=1/24), middling 

(Table 6.3, r=1/12) or long (Table 6.4 r=1/6 ).  They can also be described in terms of 

the relative incidence to be detected whether it is low (RI=1.5, 2), middling (RI=3, 

3.5), or large (RI=4, 5). The baseline incidence λ  for the number of cases arising in 

each monitoring interval is also likely to have an effect as one would expect, for 

example a pattern emerges with respect to few cases (arising from Poisson mean of 5, 

and 10) and another emerges with respect to more cases (arising from Poisson mean 

of 20 and 50). There is a pattern with respect to the proportions out of 2000 ten year 

surveillance periods that crossed either boundaries or those that did not cross any 

boundary.  Below, we describe the patterns observed.   

 

6.8.3 Power and Type II error probabilities for design values.  

 

The simulations were done with 2 1β β= , so that in each case the true relative 

incidence was the relative incidence we wanted to detect (the design value). 

Throughout we set nominal Type I and Type II error probabilities at 0.01. The results 

are summarised in Figures 6.2, 6.3, and 6.4.  
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We measured the power by calculating the proportions of the 2000 ten year traces that 

gave a signal by crossing the upper boundary (in favour of the alternative hypothesis). 

We also calculated the proportions crossing the lower boundary (in favour of the null 

hypothesis). The proportions of traces crossing the upper and lower boundary are 

analogous to sensitivity and Type II error of the surveillance system.   

 

Figure 6.2 shows that the power increased with the relative incidence, the baseline 

incidence of the number of cases arising in each six month monitoring interval and the 

risk period. For events arising with Poisson mean of 10 or more, the power is greater 

than 80% for relative incidences of 3 or more. For events arising with Poisson mean 

of 50 or more, the power is in excess of 95% for relative incidence of 2 or more. 

Figure 6.3 shows that the Type II error, that is, crossing the lower boundary in this 

case in favour of the null hypothesis given that the data arises from the distribution 

whose true relative incidence is the one we are trying to detect, is very low in all 

situations. In all cases the actual Type II error probability is much less than the design 

value of 0.01.  
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Figure 6.2. Power (percent) by relative incidence, risk period (1 week, 2 weeks, 4 
weeks) and baseline incidence (Poisson mean of 5, 10, 20, 50). 
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Figure 6.3. Type II error (percent) by relative incidence, risk period (1 week, 2 
weeks, 4 weeks) and baseline incidence (Poisson mean of 5, 10, 20, 50).  
 
 



 157 

Figure 6.4 shows a decreasing relationship between the proportions that did not cross 

either the upper or the lower boundary during the ten year surveillance period with 

relative incidence, risk period and baseline incidence. The proportions of the 2000 

simulated values that did not cross the upper or lower boundary during the ten year 

surveillance period was very high (~100%) when trying to detect a small relative 

incidence, with small baseline incidence. For events with baseline incidence of 10 or 

more, relative risk of 3 or more and risk period of 2 weeks or more, the proportion not 

crossing the lower or upper boundary within 10 years is virtually zero. 
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Figure 6.4. Proportions (percent) by relative incidence, risk period (1 week, 2 weeks, 
4 weeks) and baseline incidence (Poisson mean of 5, 10, 20, 50).  
 
So far we can see that the surveillance system is quite sensitive for detecting a relative 

incidence equal to the design value. Later, we investigate the performance of the 

surveillance system where data arises from a population whose true relative incidence 

is different from the design value. 
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                    Table 6.2. Results from 2000 simulations of 10 year surveillance period with six months monitoring interval and one week risk 
                                      Period. 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
   
                                      
            Pa, Pb, Pc=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary, Ya, Yb=the average year when the upper, lower boundary was     
            crossed conditional on having crossed the boundary. RI=relative incidence. 0.01α β= =  Type I and Type II error probabilities.  

 
 
 
 
 
 
 
 
 
 

RI Poisson 
Mean no. 
cases 

Proportions of 2000 
samples  
    Pa          P b       Pc 

Average 
year crossed 
Ya          Yb 

 RI Poisson 
Mean no. 
cases 

Proportions of 2000 
samples  
    Pa          P b       Pc 

Average 
year crossed 
Ya         Yb 

1.5 5 0.0000   0.0000  1.0000  -              -  3.5      5 0.7230     0.0030   0.274 5.40       5.00 
 10 0.0065   0.0000  0.9245 8.18          -       10 0.9430     0.0050   0.0520 3.76       3.40  
 20 0.0870   0.0000  0.9130 7.87          -      20 0.9960     0.0030   0.0010 2.30       3.11 
 50 0.5130   0.0015  0.4855 5.31       4.03      50 0.9965     0.0035   0.0000 1.09       0.91 
         
2.0 5 0.0755   0.0000  0.9245 7.42        -  4.0      5 0.8500     0.0055   0.1445 3.79  `    7.55 
 10 0.3145   0.0015  0.6840 5.67       9.18       10 0.9765     0.0060   0.0175 3.20       3.70  
 20 0.6950   0.0065  0.2985 5.63       7.70      20 0.9930    0.0070   0.0000 1.86       2.60 
 50 0.9595   0.0060  0.0245 3.59       4.17      50 0.9970    0.0030   0.0000 0.90       0.66 
         
3.0 5 0.5555   0.0030  0.4415 5.79      8.28  5.0      5 0.9565     0.0050   0.0385 3.79        5.64 
 10 0.8655   0.0095  0.1245 4.65      5.78       10 0.9945     0.0045   0.0010 2.34        2.81  
 20 0.9885   0.0070  0.0045 2.92      3.20      20 0.9965     0.0035   0.0000 1.30        1.36 
 50 0.9970   0.0030  0.0000 1.96      2.65      50 0.9975     0.0025   0.0000 0.70        0.89 
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                 Table 6.3. Results from 2000 simulations of 10 year surveillance period with six months monitoring interval and two weeks risk  
                                   period 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             Pa, Pb, Pc=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary, Ya, Yb=the average year when the upper, lower    
                             boundary was crossed conditional on having crossed the boundary. RI=relative incidence. 0.01α β= =  Type I and Type II error probabilities.  

 
 
 
 
 
 
 
 
 
 

RI Poisson 
Mean no. 
cases 

Proportions of 2000 
samples  
    Pa          P b       Pc 

Average 
year crossed 
Ya          Yb 

 RI Poisson 
Mean no. 
cases 

Proportions of 2000 
samples  
    Pa          P b       Pc 

Average 
year crossed 
Ya         Yb 

1.5 5 0.0050   0.0000  0.9950 7.60         -  3.5      5 0.9305     0.0050   0.0654 4.25       4.37 
 10 0.0755   0.0000  0.9245 7.81         -       10 0.9915     0.0060   0.0025 2.59       3.14  
 20 0.3330   0.0015  0.6655 7.00       8.76      20 0.9975     0.0025   0.0000 1.49       1.96 
 50 0.8510   0.0040  0.1445 5.12       5.02      50 0.9970     0.0030   0.0000 0.76       1.02 
         
2.0 5 0.2705   0.0010  0.7285 5.91       9.29  4.0      5 0.9665     0.0085   0.0250 3.54  `    4.75 
 10 0.6635   0.0030  0.3335 5.78       5.95       10 0.9960     0.0040   0.0000 2.08       2.96  
 20 0.9260   0.0065  0.0675 4.32       4.98      20 0.9975     0.0025   0.0000 1.23       1.51 
 50 0.9955   0.0035  0.0010 2.20       2.26      50 0.9980     0.0020   0.0000 0.65       0.50 
         
3.0 5 0.8420   0.0030  0.1550 4.98      4.85  5.0      5 0.9865     0.0070   0.0065 2.79        3.86 
 10 0.9825   0.0025  0.0150 3.36      2.23       10 0.9945     0.0055   0.0000 1.58        1.31  
 20 0.9970   0.0025  0.0005 1.90      2.53      20 0.9975     0.0025   0.0000 1.23        1.51 
 50 0.9975  0.0025   0.0000 0.96      0.77      50 0.9975     0.0025   0.0000 0.58        0.60 
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                  Table 6.4. Results from 2000 simulations of 10 year surveillance period with six months monitoring interval and one month risk 
                                 Period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        Pa, Pb, Pc=proportions of 2000 that crossed the upper boundary, lower boundary, vertical boundary, Ya, Yb=the average year when the upper, lower  
                        boundary was crossed conditional on having crossed the boundary. RI=relative incidence. 0.01α β= =  Type I and Type II error probabilities  

 

RI Poisson 
Mean no. 
cases 

Proportion of 2000 
samples  
    Pa          P b       Pc 

Average 
year crossed 
Ya          Yb 

 RI Poisson 
Mean no. 
cases 

Proportions of 2000  
samples 
   Pa          P b       Pc 

Average 
year crossed 
Ya         Yb 

1.5 5 0.0400   0.0000  0.9600 7.80         -  3.5      5 0.9955     0.0050   0.0095 3.28      2.62 
 10 0.2500   0.0020  0.7440 5.87       7.06       10 0.9960     0.0040   0.0000 1.84      2.19  
 20 0.6600   0.0050  0.3350 5.97       5.88      20 0.9960     0.0040   0.0000 1.08      1.02 
 50 0.9555   0.0050  0.0395 3.81       5.26      50 0.9990     0.0010   0.0000 0.62      0.53 
         
2.0 5 0.5364   0.0030  0.4610 5.24       8.90  4.0      5 0.9895     0.0055   0.0050 2.76  `   2.52 
 10 0.8745   0.0045  0.1210 4.73       5.33       10 0.9960     0.0040   0.0000 1.55      2.18  
 20 0.9860   0.0055  0.0085 3.08       2.99      20 0.9965     0.0035   0.0000 0.94      0.64 
 50 0.9960   0.0040  0.0000 1.49       1.01      50 0.9995     0.0005   0.0000 0.57      0.50 
         
3.0 5 0.9595   0.0045  0.0360 3.98      3.46  5.0      5 0.9940     0.0055   0.0005 2.10      1.91 
 10 0.9940   0.0050  0.0010 2.36      1.78       10 0.9960     0.0040   0.0000 1.20      0.99  
 20 0.9975   0.0025  0.0000 1.37      1.91      20 0.9975     0.0025   0.0000 0.74      0.73 
 50 0.9985  0.0015   0.0000 0.71      0.50      50 0.9995     0.0005   0.0000 0.52      0.50 
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Figure 6.5. Effects of risk period, relative incidence and baseline incidence of the number of cases on 
the surveillance system from 2000 simulation of 10 year surveillance period with 6 months monitoring 
time interval when either boundaries were crossed. 
 
 
6.8.4 Time to crossing a boundary 

 

Figure 6.5 (left panel) shows the average time (years) to crossing the upper boundary, 

conditional on crossing it. Figure 6.5 (right panel) shows the corresponding results for 

lower boundary. Note that these graphs should be interpreted in conjunction with 

Figure 6.4.    

 

In brief, figure 6.5 shows that, conditional on crossing, crossing either boundary 

occurs earlier for the following situations: 

 

(a) As the risk period increases. 
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(b) As the relative incidence to be detected increases. 

(c) As the baseline incidence increases (Poisson mean of 5, 20, 20, 50). 

 

Most interest relates to Figure 6.5 (left part). For events with baseline incidence of 10 

or more, and a relative incidence of 3 or more, detection occurs within 5 years on 

average in those detected.  For events with an incidence of 50 or more, detection 

occurs within 2 years. This means that if there is a problem, then it is detected 

quickly. 

 
 
6.8.5 Simulations for relative incidences other than the design value. 

 

In the last three subsections, we have seen how the surveillance system performs 

when we simulated data using a relative incidence equal to the design value. We now 

present simulation results when the true relative incidence 2RI  associated with the 

event of interest differs from the design value of the SPRT (that is, the relative 

incidence RI  the system is designed to detect). 

 

We investigated similar situations as in those given in section 6.8.3 but here we 

present results for the 2 weeks risk period only. The design relative incidence RI  is 

1.5, 2, or 3 and the true relative incidence 2RI  is 1, 1.2, 1.5, 2, or 3.  
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Table 6.5. Results from 2000 simulations of 10 year surveillance period with six 
months monitoring interval and two weeks risk period. 
 

Pa, Pb, PC=proportions of  2000 that crossed the upper  boundary, lower boundary, vertical boundary, 
Ya, Yb= the average year when the upper, lower boundary was crossed conditional on having crossed 
the boundary. RI=relative incidence to be detected (design value), RI2=true relative incidence in the 
population. 0.01α β= =  Type I and Type II errors.  

RI 
RI2 

Poisson 
Mean no. 
cases 

Proportions of 2000 
samples 
  Pa          P b       Pc 

Average 
year crossed 
Ya          Yb 

 RI 
RI2 

Poisson 
Mean 
no. cases 

Proportions of 2000 
samples.  
    Pa          P b       Pc 

Average 
year crossed 
Ya         Yb 

1.5  
1.0 

    1.5  
1.2 

   

 5 0.0005   0.0000  0.9995 9.50        -   5 0.0005   0.0000  0.9995 8.00        - 
 10 0.0000   0.0210  0.9790    -          9.09    10 0.0050   0.0055  0.9895 7.44       9.39  
 20 0.0035   0.2635  0.7330 5.72       7.80   20 0.0350   0.0445  0.9205 6.91       8.04 
 50 0.0035   0.8265  0.1700 5.01       5.65   50 0.1345   0.2435  0.6220 5.99       6.62 
1.5 
2.0 

    1.5 
3.0 

   

 5 0.0640   0.0000  0.9370 8.03       -   5 0.5080   0.0000   0.4920 7.45       - 
 10 0.4840   0.0000  0.5160 7.25       -    10 0.9730   0.0000   0.0270 5.32       -  
 20 0.9250   0.0000   0.0750 5.43       -   20 1.0000   0.0000   0.0000 2.89       - 
 50 1.0000   0.0000   0.0000 2.57       -   50 1.0000   0.0000   0.0000 1.32       - 
2.0 
1.0 

    2.0 
1.2 

   

 5 0.0010   0.1140   0.8850 6.75       8.46   5 0.0075   0.0535   0.9390 7.38       8.63 
 10 0.0025   0.5670   0.4305 7.44       6.85   10 0.0230   0.2915   0.6855 6.33       7.24  
 20 0.0035   0.9140   0.0825 3.97       4.96   20 0.0515   0.6295   0.3190 5.40       5.78 
 50 0.0030   0.9950   0.0020 2.40       2.52   50 0.0550   0.9020   0.0430 3.10       3.74 
2.0 
1.5 

    2.0 
3.0 

   

 5 0.0440   0.0100   0.9460 6.93       8.65   5 0.8015   0.0000   0.1990 6.05        - 
 10 0.1570   0.0890   0.7540 6.27       7.27   10 0.9905   0.0000   0.0095 3.92        -  
 20 0.3180   0.1815   0.5005 5.52       5.98   20 1.0000   0.0000   0.0000 2.10        - 
 50 0.5710   0.2720   0.1570 4.35       4.69   50 1.0000   0.0000   0.0000 1.02        - 
3.0 
1.0 

    3.0 
1.2 

   

 5 0.0040   0.7865  0.2095 3.55      5.97   5 0.0210   0.6045  0.3745 5.19      6.46 
 10 0.0035   0.9775  0.0190 3.67      4.02   10 0.0190   0.8895  0.0915   3.44      4.70 
 20 0.0045   0.9955  0.0000 1.84      2.26   20 0.0150   0.9775  0.0075 3.37      2.94 
 50 0.0020   0.9980  0.0000 0.50      1.05   50 0.0115   0.9885  0.0000 1.31      1.44 
3.0 
1.5 

    3.0 
2.0 

   

 5 0.0705  0.3230  0.6065 5.50      6.76   5 0.3215  0.0955  0.5830 5.65      6.54 
 10 0.1090  0.6320  0.2590 4.79      5.39   10 0.5075  0.1785  0.3140  3.88      5.17 
 20 0.1270  0.8110  0.0620 3.33      4.05   20 0.6670  0.2365  0.0965 3.89      4.11 
 50 0.1070  0.8915  0.0015 4.35      4.69   50 0.7770  0.2160  0.0070 2.28      2.45 
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6.8.6 True relative incidence=1 ( 2RI 1= )  

 

We first investigated the performance of the surveillance system when the true 

relative incidence is 1. The quantity of interest is the Type I error, namely the 

probability of crossing the upper boundary (within 10 years) when the true relative 

incidence is 1. We see from the rows of Table 6.5 (rows 2RI 1= , column Pa ) that the 

empirical Type I error is smaller than that used to set the boundaries (0.01). This 

means that in most situations when the true relative incidence is 1, the surveillance 

system will not give a false alarm. As the design relative incidence increases and as 

the base line incidence increases, the system becomes more sensitive by signalling 

very quickly in favour of the null hypothesis (high proportions crossing the lower 

boundary ‘Pb’, see table 6.5). Figure 6.6 below shows the probability of correctly 

concluding that the relative incidence is 1, as indicated by the percentages of traces 

crossing the lower boundary. The probability of correctly concluding that the relative 

incidence is 1 was greater than 90% for design values RI  in excess of 2, and baseline 

incidence of 20 or more. 
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Figure 6.6. Probability of crossing lower boundary.  

 
 

6.8.7 True relative incidence greater than 1, but not equal to the design value 

 

Tables 6.5 also shows the results from the simulation with design value ( RI ) of the 

relative incidences of 1.5, 2, and 3 arising from simulations with true relative 

incidence ( 2RI ) 1.2, 1.5, 2, and 3. As one would expect, when the true relative 

incidence is larger than the design value (for example RI=1.5 and 

2 2RI 2 or 3, RI 2 and RI 3= = = ) the system very quickly signalled in favour of the 

alternative hypothesis. This is indicated by the decreasing average year when the 

upper boundary was crossed and by the high probabilities of crossing the upper 

boundary. In contrast, for the following pairs ( 2RI, RI ): (1.5, 1.2), (2, 1.2), (3, 1.2), 

(3, 1.5), the system signalled more frequently in favour of the null hypothesis than for  

the alternative. For the pairs (2, 1.5), (3, 2) the reverse was the case.  
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6.8.8 Average year to signal for simulations with different design values 

 

In terms of how quickly the process was able to signal by way of either crossing the 

upper threshold or lower threshold, Table 6.5 show that the smaller the design value 

RI , the longer the process took to signal. The detection times (conditional on 

detection occurring) decrease as the true relative incidence 2RI and the baseline 

incidence increase.  

 

6.9 Conclusion 

 
In this chapter, we have illustrated how the SPRT can be adapted for use with the self-

controlled case series method. We have evaluated the performance of the SPRT by a 

simulation study of a possible surveillance system.  

 

Overall we see from the simulation study that the performance of the surveillance 

system using the SPRT works broadly as intended. Ideally, we would like a system to 

be very quick to detect a true relative incidence greater than 1 and also if there is no 

problem we would like the process not to cross the upper boundary or ideally signal in 

favour of the null hypothesis. The simulation study showed that the system was able 

to achieve all these.  

 

Using the SPRT with the self controlled cases series method has all the advantages of 

using the self-controlled case series method (see chapter 1). A further advantage 

compared to other methods [79-82] is the specification of Type I and Type II error 

probabilities which control against making wrong decisions. These error levels apply 

to the entire SPRT process, not to each specific monitoring time interval, and for this 
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reason the analysis takes account of multiple testing. The adjustment for multiple 

testing is not explicit as in the Bonferroni adjustment, but is incorporated into the 

SPRT in the way that the upper and lower boundaries are calculated. These 

boundaries preserve  and α β until a final decision is reached as to whether the 

hypothesis should be accepted or rejected [92]. However, we note that the actual Type 

I and Type II error probabilities are lower than the nominal values 0.01= =α β . 

Typically the actual values are less than half the nominal values. Thus the boundaries 

could be made less stringent without adversely affecting the actual error probabilities; 

nominal values 0.025= =α β  might be appropriate to obtain actual values close to 

0.01.   

 

A possible limitation with the surveillance method is its inability to signal in real time 

since it is based on retrospective data. One possible solution to this would be to make 

the monitoring time interval shorter, though we have not investigated the implications 

of this other than through varying the baseline incidence λ . Finally, it should be 

stressed that such a surveillance system would rely on routinely collected data for 

signal detection. Such data have varying degrees of accuracy in diagnostic coding; it 

is for this reason that such a surveillance system should not be viewed as the final 

confirmatory epidemiologic investigation into potential vaccine adverse events. Such 

a surveillance system is also limited to conditions that develop relatively soon after 

vaccination, and would not be suitable for investigation of conditions with a longer 

induction period, for example an adverse outcome that manifests itself several years 

after exposure.     
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This chapter provides a ‘proof of principle’: the case series method can be used for 

focused surveillance using the SPRT. Further work is required to incorporate age 

effects, select optimal values of =α β and the best monitoring interval. 
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Chapter 7 

 

Long-term surveillance using CUSUM charts with the self-controlled 

case series method 

 

7.1 Introduction 

 

In chapter six we explored various methods used in surveillance systems. We 

identified two possible methods that can be adapted for use with the self-controlled 

case series method. These were the sequential probability ratio test (SPRT) and the 

cumulative sum (CUSUM). We showed how the SPRT can be used with the case 

series method. We now show how the CUSUM can be used with this method. In 

chapter 6 the emphasis was on focused surveillance of a single vaccine and adverse 

event, as would be undertaken after licensure of a new vaccine. The situation we 

consider here is the second scenario described in section 6.2 of chapter 6, namely 

long-term surveillance of several vaccines or several adverse events. The presumption 

is that there is no problem, so that 2RI 1= (where 2RI is as defined in section 6.8.1 of 

chapter 6). The main differences with the earlier scenario are that there is no time 

limit (previously we had a vertical boundary at 10 years) and that we need to control 

the overall Type I error for several vaccines.  We begin by a brief background of the 

genesis of the CUSUM charts in section 7.2, followed by some theory behind the 

CUSUM presented in section 7.3; a note on the control limit of the CUSUM is given 

in section 7.4. Section 7.5 describes the two sided tabular CUSUM. The application of 

the CUSUM to surveillance using the case series method is given in section 7.6, and 
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in section 7.7 we present results from a simulation study. We conclude the chapter by 

describing the overall findings in section 7.8. 

    

7.2 Background on CUSUM 

 

The CUSUM procedure is one of the most well-known monitoring methods for 

sequential data. There are two types of CUSUMs, the tabular (algorithmic, decision 

interval) CUSUM and the V-mask form. The tabular CUSUM was first introduced by 

Page [46]. It was developed from the Wald sequential test [45]. It was designed to 

detect changes in a process parameter of interest, for example in our case the relative 

incidence RI (where RI is as defined in section 6.8.1 of chapter 6). Later, Barnard 

[102] developed the V-mask form of the CUSUM. The idea behind the V-mask 

CUSUM was to enable combined detection of both an increase or a decrease of the 

parameter of interest. We restrict attention to the tabular CUSUMs which can easily 

be adapted for use with the self-controlled case series method. 

 

The initial development of CUSUM by Page [46] was for use in industrial problems 

where monitoring of a production process is of interest. In these settings, the CUSUM 

charts have been shown to be ideally suited to detecting small persistent process 

changes[103]. Recently [86, 88, 92, 97, 104, 105], CUSUMs have been used in a 

medical context  to monitor  outbreaks of infectious disease or congenital 

malformations. Application of the CUSUM to monitoring surgical performance was 

first proposed by Williams et al [106]. The first application of a CUSUM chart to 

monitoring surgical performance is documented in De Leval et al [107] and Steiner et 

al [108] who considered the problem of monitoring outcomes in paediatrics cardiac 
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surgery. Rossi et al [109] used CUSUM charts to monitor respiratory and mortality in 

males in North Tuscany. Marshall et al [110] propose a CUSUM dealing with 

simultaneous surveillance of health outcomes over multiple units as well as time 

points.     

 

7.3 The CUSUM  

 

The CUSUM procedure involves plotting  

 ( ) ( )1max 0, ,   1,2,3,...                                                                  7.1t t tZ Z t−= + Λ =  

at the tht  observation, where, as for the SPRT, 0 0=Z and tΛ is the sample weight 

assigned to the tht  subgroup as defined in an SPRT. For use with the self-controlled 

case series method, subgroups are a collection of cases taken from the surveillance 

system at fixed monitoring intervals.  The CUSUM procedure differs from the SPRT 

because it has a holding barrier at zero rather than a lower absorbing barrier. The 

CUSUM sequentially tests the hypothesis 0 0: =H θ θ versus 1 1: =H θ θ . The process is 

assumed to be in state 0H as long as <tZ h , and is deemed to have shifted to state 1H  

if ≥tZ h at some time t . The constant h  is called the control limit of the CUSUM. A 

CUSUM that exceeds the control limit is said to have ‘signalled’. A signal means that 

the chart has accumulated enough evidence to conclude that the process (surveillance) 

parameter has changed. At this point, it is expected that monitoring will stop and 

remedial action will be taken. Notice that although individual scores ( tΛ ) may be 

negative, the tabular CUSUM based on tZ is restricted to values greater or equal to 

zero. This is mainly because the expression (7.1) is designed to detect an increase in 
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parameter 1θ . Later we will show how (7.1) can be rewritten to monitor decrease in 

parameter 1θ .  

 

The hypothesis 0H  in the CUSUM can never be accepted, while 1H will eventually be 

accepted with probability 1, thus 1 and 0= =α β . Theoretically the CUSUM will 

always eventually signal, although the signal may be a false alarm. The run length of 

the CUSUM is defined as the time (or number of observations) required before the 

CUSUM first exceeds the control limit (i.e. signals). Good choices for the control 

limit h are based on the expected or average run length (ARL) of the CUSUM 

under 0 1 and H H . The ideal situation is to have a long ARL when the process is in 

state 0H but a short ARL when the process has shifted to state 1H .  

 

 Whereas the performance of an SPRT is determined by its nominal error 

rates  and α β , the efficiency of a CUSUM chart is quantified in terms of length of 

time before an alarm, false or true, is raised. The CUSUM’s performance is assessed 

by the average run length to detection of an alarm. A useful review of some 

alternative measures that can be used to summarise the performance of Statistical 

Process Control (SPC) charts of which the CUSUM is one is provided by Frisén 

[111]. The most commonly used measure as reviewed by Frisén is the average run 

length. When the process is in state 0H , the average run length to detection is called 

the in-control 0ARL  and this is analogous to the Type I error of an SPRT, whereas the 

out-of-control 1ARL  is the average run length to detection when the process is in state 

1H  which is analogous to 1 minus the Type II error (power) of an SPRT.  
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Brook et al [112] and also Grigg et al [92] showed that the distribution of in-control 

run lengths for a CUSUM scheme is approximately geometric, hence it possesses the 

memoryless property and because it is also discrete, it will usually remain close to 

zero. On the other hand, the out-of-control run length distribution is not geometric 

because the chart in this case will tend to move towards the out-of-control region 

rather than remaining at zero. 

 

The CUSUM may be defined for weights tΛ other than the log-likelihood ratio in 

contrast to the SPRT which is only defined with log-likelihood ratio weights. The log-

likelihood ratio weights are the best to use in a CUSUM. Moustakides [113]  showed 

that the log-likelihood ratio weights are optimal in the sense that, of all CUSUMs with 

the same ARL under the null hypothesis, the CUSUM with log-likelihood ratio 

weights has the shortest ARL under the alternative.  

 

7.4 Determination of the limit h in a CUSUM 

 

Choosing the control limit h should be based on the expected or average run length of 

the CUSUM under 0H and 1H . Determining the average run length of a CUSUM is 

computationally intensive since it is based on all possible outcomes for a long series 

of observations of a monitoring process. 

 

 There are various ways of determining the ARL for a CUSUM. Some people use 

simulation, which is straight-forward but can be time consuming. Others have 

calculated the ARL using an integral equation approach [114]. In this approach, 

solutions are only possible via numerical methods. The method is only applicable to 
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charts with outcomes that follow a normal distribution. In fact, in some instances in 

this approach, the solution may not even be possible. 

 

Steiner et al [74] have proposed an approach based on Markov chain methodology.  In 

this method, properties of the run lengths distribution are used to determine the set of 

probabilities of moving from one point on a chart to another and then manipulating 

the resulting transition matrix [74]. Calculating the ARL using Markov chain 

methodology requires the state space to be discretised so that it is finite. Steiner et al 

do this by enlarging the weights and control limits by a factor (the multiplier) and 

rounding off to the nearest integer. Grigg et al [92] have argued that as the result of 

discretisation, the Markov chain methodology of calculating the ARL may induce 

some error, but the error settles very quickly as the process continues. In our case, we 

shall determine the average run length by simulation. We use this approach because it 

will allow us to explore the behaviour of the self-controlled case series CUSUM and it 

will enable us to explore ARLs  for several CUSUMs. 

  

7.5 Two-sided tabular CUSUM 

 

The CUSUM described in the last few sections concentrated on observing a shift of 

one particular parameter of interest, say the relative incidence RI  denoting an 

increase from the null value 1. In other circumstances one might also be interested in 

knowing whether a particular vaccine has developed some protective effect with 

respect to the adverse event resulting in a decrease of the relative incidence below 1.  

In such situations one could use a two-sided CUSUM. That is, one with the upper 

limit, denoting an increase (which in the case of the relative incidence represents a 
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deterioration) of the parameter from the expected, and the other, with the lower limit 

denoting a decrease (which represents protection) of the parameter from expected. 

Page [46] was the first to suggest a two sided CUSUM, that is, the combined use of 

two one-sided tabular CUSUMs, one to detect improvement and the other to detect 

deterioration. Two sided CUSUMs are now widely used [74, 92, 115] and calculations 

of the ARL are needed for both sides.  

 

The CUSUM designed to detect the decrease in the parameter will accumulate 

negative values, hence the updating formula (7.1) can be modified as shown below: 

 

        ( ) ( )1min 0, ,   1,2,3,...                                                               7.2t t tZ Z t−= − Λ =  

 

where 0 0=Z as before and tΛ is still as defined in expression (6.9) of chapter 6. To 

enable plotting the CUSUM chart for the two sided on the same plot, the limit to 

detect a decrease in the parameter is usually assigned a negative value. We shall not 

explore the CUSUM based on a decrease in the parameter of interest since this is 

seldom of interest in a surveillance framework.  

 

7.6 Use of the CUSUM for surveillance of adverse events  

 

As outlined above, the CUSUM never results in ‘acceptance’ of the null hypothesis, 

and in this sense is well suited for long-term monitoring of established vaccines, the 

presumption being that such vaccines are safe. The aim of such monitoring could be 

to identify problems resulting from changes in vaccine production or delivery over 

time. Typically, one might expect several adverse events and several vaccines to be 
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monitored, thus increasing the chance of a false detection. For this reason, there is a 

danger that such a monitoring scheme will produce too many false warnings. Rather 

than ascribe precise detection limits, it is probably more sensible to use CUSUMs in a 

more informal manner, by plotting the updated values for the several conditions to be 

monitored, and inspecting them informally. In addition to a CUSUM signalling, two 

features might also be of interest: 

a. Persistent increasing trends above baseline. 

b. Persistent ranking in ‘top’ position of one CUSUM. 

 

Either of these might suggest further, more formal, investigation, perhaps in the first 

instance using the SPRT, or by setting up a suitable epidemiological study. We shall 

concentrate on issues relating to a CUSUM signalling. In the next section, we 

investigate the performance of the self-controlled case series adapted CUSUM by 

determining the average run lengths in a simulation study.  

 

7.7 Simulation study to evaluate the self-controlled case series CUSUM. 

 

7.7.1 Simulation scenario 

 

We considered two settings: surveillance of a single vaccine, and surveillance of 

several vaccines. The simulation study was carried out in a similar way as described 

in sections 6.6.1 and 6.8.1 of chapter 6.  The main difference is that the lower and 

vertical boundaries were removed. We computed the average run length of the 

CUSUM for both in control and out of control processes. The other difference was 

that we looked at two approaches when simulating several vaccines. In the first 
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approach, when one vaccine signals we stop the whole process,  and start again after 

resetting the CUSUM value of every vaccine to zero. In the second approach, when a 

signal is triggered, the CUSUM value for the signalling vaccine only is reset to zero. 

So as not to make the simulations too unwieldy, we used five vaccines to represent a 

situation corresponding to monitoring several vaccines. This represents a realistic 

choice in the light of childhood immunisation programmes.  To determine the average 

run lengths, we simulated for long enough to be sure that the upper limit is eventually 

crossed. In practice we simulated for 100 years.   

 

7.7.2 Average run length in control and out of control for one vaccine. 

 

We begin by looking at the average run length for systems in control and out of 

control when monitoring a single vaccine. Finding the average run length in control is 

similar to investigating the Type I error in an SPRT (see section 6.8.6 of chapter 6). 

The parameters used in the simulation for the CUSUM were as follows. 

 

Similar to the simulation in the SPRT, we used a monitoring interval of six months. 

We investigated various risk periods, but here we report only results for two weeks 

risk periods. Since in the present context the presumption is that the vaccine is safe, 

we are primarily interested in investigating relatively small changes in the relative 

incidence of adverse events. Accordingly we used design values for the relative 

incidence of 1.5, 2 and 3. We present values of 1, 2, 3, 4, for the control limits h  

because they gave ARLs that were realistic. The baseline incidences we investigated 

were same as in the SPRT, that is, Poisson mean of 5, 10, 20, and 50 per monitoring 

interval. So for one vaccine under investigation, we had a combination of 3 design 
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values, 4 control limits, 4 baseline incidences giving a total of 48 different 

simulations. The out-of-control data were simulated using design values, so 2RI RI= .  

 

In the case of a single vaccine, we simulated each scenario 2000 times and for each 

run of 2000 we found the average run length by calculating the average time at which 

the control limit was crossed. We also looked at the median time when the control 

limit was crossed, but only report the average because the distribution of crossing 

times was generally quite symmetric and the results based on means and medians 

were very similar. 

 

Table 7.1 and Figure 7.1 below shows the average run lengths in years of a process in 

control and out of control for one vaccine. We can see from Figure 7.1 that the 

average run length in both situations decreases with decreasing control limit, 

increasing baseline incidence, and increasing design value. The decrease of the 

average run length with increasing design values may be explained as follows. The 

sample weight (6.9) in the CUSUM is ( )1
.1 1 .. log 1t t tn n r e rββΛ = − − + . In this 

expression, for values of the relative incidence close to 1, for example relative 

incidences less than 5, and low values of r (here 
2

24
r = ) the values of .1 1tn β dominate 

the values of ( )1
.. log 1tn r e rβ− + hence as the relative incidence increases, the values 

of the CUSUM increases quickly such that it crosses the control limit sooner with 

larger design values (Figures 7.1 ). The average run length is shorter out of control 

than in control at each set of parameter values. The out of control ARL is at least 3 

times the in control ARL at each control limit (see 0 1ratio ARL / ARL=  in Table 7.1).  
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Table 7.1 Average run length  for one vaccine in and out of control. 
h  λ  

0ARL for one  

vaccine in control.  
       (years)  

1ARL for one  

vaccine out of control.  
           (years) 

0

1

ARL
ratio

ARL
=  

        Design value 
1.5         2        3 

  Design value  
 1.5         2             3 

 Design value 
1.5         2        3 

1 5 
10 
20 
50 

11.9  
7.48  
5.32  
4.63  

8.32  
6.05  
4.55  
3.66  

5.54  
4.27  
3.74  
3.13  

3.28  
2.05  
1.45  
0.98  

1.66  
1.20  
0.90  
0.72  

1.08  
0.83 
0.72  
0.60  

3.63 
3.65 
3.67 
4.72 

5.01 
5.04 
5.06 
5.08 

5.13 
5.15 
5.19 
5.22 

2 5 
10 
20 
50 

31.4  
21.9 
17.0  
10.9  

21.9  
15.7  
10.8  
7.53  

13.0  
10.9  
7.65  
5.25  

8.58  
5.93  
3.60  
1.98  

4.35  
2.39  
1.62  
1.00  

1.98  
1.40 
0.98  
0.67  

3.66 
3.69 
4.72 
5.51 

5.03 
6.57 
6.67 
7.53 

6.57 
7.79 
7.81 
7.84 

3 5 
10 
20 
50 

41.7 
35.3  
25.1  
18.6  

31.3 
28.4  
17.1  
11.4  

22.7  
19.7  
10.1  
9.67  

9.26  
7.21  
5.10  
3.35  

6.20  
4.63  
2.64  
1.43 

3.34  
2.51  
1.28  
0.75  

4.51 
4.90 
4.93 
5.55 

5.05 
6.14 
6.48 
7.97 

6.80 
7.85 
7.89 
12.9 

4 5 
10 
20 
50 

45.8  
38.8  
29.5  
21.0  

36.1  
31.8  
21.8  
15.7  

28.9  
22.1  
15.7  
13.8  

9.99  
7.88  
5.92  
3.77  

7.10  
5.10  
3.35  
1.76  

4.24  
2.77 
1.46  
0.88  

4.58 
4.92 
4.98 
5.57 

5.09 
6.24 
6.51 
8.92 

6.82 
7.98 
10.8 
15.7 

h is the control limit, λ is the baseline incidence with Poisson mean of 5, 10, 20 and 
50.                               
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Figure 7.1 Average run lengths in and out of control for one vaccine 
 
 
7.7.3 Average run length of a CUSUM in control and out of control for five 

vaccines: If one signals, correct it and reset all. 

 

In the case of a surveillance system with several vaccines in which all CUSUMs are 

reset when one signal is triggered, we were interested in the average run length of the 

system as a whole. We investigated a system with 5 parallel CUSUMs. The overall in-

control ARL is the average time to signal for any of the component CUSUMs. Thus it 

is the minimum of the five individual 0ARL s . We based each component CUSUM on 

the same parameters, and obtained 10 000 simulations. Then we calculated the 

minimum 0ARL s  in groups of five. The overall 0ARL s  is the average of the 2000 

minima.  
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When monitoring five vaccines, it is unrealistic to expect all five vaccines to be out of 

control, hence we looked at a situation in which five vaccines are under surveillance 

and only one vaccine is out of control. The 1ARL is the time to detection of the out of 

control vaccine, starting from 0. A possible realisation is given in Figure 7.2 below. 
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Figure 7.2 CUSUM chart monitoring possible 5 vaccines with one vaccine out of 
control. 
 
 
Figure 7.2 shows a situation in which five vaccines are under surveillance and all but 

one are in control. The design value of the relative incidence is 2 and the expected 

baseline frequency of cases is 10 cases every six months. The control limit is 2. We 

can see that the system first signalled at about 4.5 years with the fourth vaccine 

(which was in control). The values of the CUSUM for all five vaccines were reset to 

zero and the process continued. After 8 years, the second vaccine signalled (again in 

control). Again all CUSUMs were reset to zero. After 10.5 years the fifth vaccine 

signalled; again all CUSUMs were reset. Finally in 14th year of observation the 
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vaccine out of control signalled and again all the vaccines were reset and the year of 

first signalling of the out-of-of control vaccine would have been recorded as 14. Note 

that this is somewhat unusual scenario: in most situations, it is the vaccine out of 

control that would signal first as can be seen by the closeness of its trace to the control 

limit when the in control vaccines signalled. This process was simulated 2000 times 

and the average time to signal was calculated. Table 7.2 below shows the results 

obtained from the simulation.   

 

Overall Table 7.2 shows that the average run length for the system with one vaccine 

out of control was shorter than for the system with five vaccines in control. Figure 7.3 

below illustrates that the average run length in either situation increased with 

increasing control limit, decreased with increasing baseline incidence and decreased 

with increasing design value. However, the values of the ratios 0 1ARL / ARL  for five 

vaccines were consistently less than the corresponding values for a single vaccine (see 

Table 7.1 and Table 7.2).      
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Figure 7.3 Average run length of a CUSUM in and out of control with 5 vaccines 
under surveillance. 
 
Table 7.2 Average run length for in and out of control for 5 vaccines. 
h  λ  

0ARL for five  

vaccine in control  
(years ) 

1ARL for five vaccines 

 and one out of control  
 (years) 

0

1

ARL
ratio

ARL
=  

        (Design value) 
   1.5            2               3 

  (Design value) 
   1.5             2               3 

 (Design value) 
1.5         2        3 

1 5 
10 
20 
50 

5.23 
3.95 
3.32  
1.62  

4.67 
2.96  
2.23  
1.54  

2.97 
2.66  
1.99  
1.31  

5.11 
3.85 
3.19  
1.27  

3.86  
2.26 
1.67  
1.12  

1.75 
1.23 
0.89  
0.58  

1.02 
1.03 
1.04 
1.28 

1.21 
1.31 
1.34 
1.37 

1.70 
2.16 
2.23 
2.25 

2 5 
10 
20 
50 

14.2  
11.4  
9.79  
5.30  

9.09  
6.57  
4.93  
4.11  

5.61  
4.59  
4.22  
3.25  

13.6  
10.6  
6.44  
3.11  

7.42  
4.33 
2.46  
1.30  

3.12  
1.84  
1.16  
0.72  

1.04 
1.08 
1.52 
1.70 

1.23 
1.52 
2.00 
3.16 

1.80 
2.49 
3.64 
4.51 

3 5 
10 
20 
50 

16.9 
15.3  
14.2  
11.4 

14.7 
13.6  
10.3  
9.05  

11.5 
9.76  
9.10  
8.51  

15.3 
13.4 
9.18  
4.19  

11.1  
5.84 
3.34  
1.59  

4.12 
2.38  
1.38  
0.78  

1.10 
1.14 
1.55 
2.72 

1.32 
2.33 
3.08 
5.69 

2.79 
4.10 
6.59 
10.9 

4 5 
10 
20 
50 

17.7 
16.5  
15.7  
14.8  

16.3  
15.2  
14.7  
14.0  

15.1  
14.5  
13.4  
12.1  

16.9  
14.7  
12.0  
5.35  

14.6  
7.57  
4.16  
1.95  

5.30  
2.87  
1.68  
0.87  

1.05 
1.12 
1.31 
2.77 

1.12 
2.01 
3.53 
7.18 

2.85 
5.05 
7.98 
13.9 

h is the control limit, λ is the baseline incidence with Poisson mean of 5, 10, 20 and 
50. If one signals, correct it and reset all. 
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7.7.4 Average run length of a CUSUM in control and out of control for five 

vaccines: If one signals, correct and reset only the signalling vaccine. 

 

We now present results from simulations in which when one vaccine of the five 

vaccines under surveillance signals, only the signalling vaccine is reset to zero. For 

this situation, we defined the system 0ARL  as the average time between signals in the 

long run when all vaccines are in control. So we left the process running until we had 

2000 signals and calculated the average time interval between successive signals. 

Figure 7.4 below shows a possible realisation of such a surveillance system. 
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Figure 7.4 CUSUM chart monitoring possible 5 vaccines resetting only the vaccine 
out of control. 
 
In the realisation shown in Figure 7.4, all five vaccines under surveillance are in 

control and the system is under surveillance for 54 years. The design value in this case 

was a relative incidence of 3, the baseline incidence was 50 cases in each monitoring 
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interval and the control limit was set at 2. We see that the fifth vaccine signalled first 

in the 5th year. This vaccine alone would then have been looked at, its CUSUM reset 

to zero and the surveillance would have continued. The second signal, by the fourth 

vaccine, was in the sixth year of observation and a similar action would have been 

taken for this vaccine alone, and so on. The 0ARL of the system is therefore the 

average interval between signals when all vaccines are in control. The 1ARL is the 

average time to detect an out-of-control vaccine starting from zero. Table 7.3 below 

shows the results from the simulations. 

 
Table 7.3 Average run length for in and out of control for 5 vaccines. 
 
h  λ  

0ARL 5 Vaccines in 

control. Average time 
interval between false 
signals (years) 

1ARL  5 vaccines 

with one out of control. 
Average time interval 
between signals (years) 

0

1

ARL
ratio

ARL
=  

        (Design value) 
 1.5           2           3 

  (Design value) 
1.5        2               3 

 (Design value) 
 1.5           2         3 

1 5 
10 
20 
50 

4.35 
2.76  
2.03  
1.49  

2.36  
1.74  
1.51  
1.40  

1.78  
1.59  
1.49  
1.32  

3.26  
2.05  
1.46  
0.99  

1.67  
1.18  
0.92  
0.73  

1.10  
0.85  
0.70 
0.58  

1.33 
1.35 
1.39 
1.51 

1.41 
1.47 
1.64 
1.92 

1.62 
1.87 
2.13 
2.28 

2 5 
10 
20 
50 

12.9  
10.9  
7.74  
4.62  

8.71  
5.92  
4.61  
3.84  

4.13  
4.39  
4.08  
2.92  

8.60  
6.00  
3.55  
1.98  

4.35  
2.38  
1.64  
1.04  

1.96  
1.38  
0.98  
0.65  

1.50 
1.82 
2.18 
2.33 

2.00 
2.49 
2.81 
3.69 

2.11 
3.18 
4.16 
4.49 

3 5 
10 
20 
50 

15.1 
13.8  
11.8  
10.0  

13.4  
12.2  
9.10  
8.50  

9.60  
8.11  
7.90 
7.23  

9.20  
7.20  
5.12  
3.35  

6.20  
4.69  
2.66  
1.42  

3.37  
2.51  
1.27  
0.75  

1.64 
1.92 
2.30 
2.99 

2.16 
2.60 
3.42 
5.99 

2.85 
3.23 
6.22 
9.64 

4 5 
10 
20 
50 

16.8  
15.4  
13.9  
11.9  

15.6  
14.3  
12.2  
10.7  

13.9  
10.3  
9.60  
8.26  

9.97  
7.90  
5.90  
3.77  

7.12  
5.14  
3.35  
1.72  

4.24  
2.76  
1.49  
0.85  

1.69 
1.95 
2.36 
3.16 

2.19 
2.78 
3.64 
6.22 

3.28 
3.73 
6.44 
9.72 

h is the control limit, λ is the baseline incidence with Poisson mean of 5, 10, 20 and 
50. If one signals, correct and reset only the signalling vaccine. 
 
 
The average time intervals in control and out of control shows a similar trend as 

before, except that just resetting the problem vaccine means that the average 
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frequency of signals is greater. In particular, the ARL values are shorter than those 

found in Table 7.2. The other notable difference is that the 0

1

ARL

ARL
 ratios are generally 

larger when only the signalling vaccine is reset compared to the situation when all 

vaccines are reset (see Table 7.2, Tale 7.3 and the corresponding ratios 0

1

ARL

ARL
). There 

are exceptions, corresponding to high values of h and high design values, in which the 

ratios 0

1

ARL

ARL
are smaller when only the signalling vaccine is reset. These values are 

indicated in bold in Tables 7.2 and 7.3. 

 

7.8 Conclusion 

 

In this chapter, we explored how the self-controlled case series sample weight 

( )1
.1 1 .. log 1t t tn n r e rββΛ = − − + may be used in CUSUM charts. We have shown in 

different situations how such CUSUMs may be useful in long term surveillance of 

new vaccines. Unlike Marshall et al [110] who concentrated on false discovery rates 

(FDR) and successful discovery rates (SDR) in assessing the performance of the 

CUSUM, we assessed the performance of the case series CUSUM using average run 

lengths, suitably redefined for the surveillance of several vaccines. The method of 

Marshall et al [110] based on the false detection rate applies perhaps more 

appropriately to the surveillance of large number of units. However, it lacks the focus 

on detection times which is provided by the system 0ARL and 1ARL formulation.  

Our ‘system’ 0ARL and 1ARL  are practically relevant parameters. The 

system 0ARL measures the time interval between false signals when the system is in 
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control. A large value of 0ARL is desirable. Surveillance of several vaccines 

drastically reduces the 0ARL obtained for a single vaccine. In an effort to increase the 

0ARL we investigated a resetting scheme where all vaccines are reset, not just the 

signalling vaccine. This does indeed increase the 0ARL , but also affects the 1ARL . 

 

The 1ARL is an upper limit on the time interval between a problem occurring and 

when it is detected (it is an upper limit because the CUSUM will generally be greater 

than zero when the problem occurs). This time interval must be kept small; detection 

within 2 years might be a reasonable requirement. Thus using the 1ARL  may 

underestimate the speed at which problem vaccines are identified. 

 

Choosing the control limit h should be based on the expected or average run length of 

the CUSUM under 0H and 1H . Based on our simulations, if one vaccine is under 

observation, with a two week risk period, a six months observation period, and we are 

interested to detect a relative incidence of 3 based on the assumption that there are 

likely to be few cases arising in each six month monitoring interval (baseline 

incidence with mean of five), the simulation study (Table 7.1) shows that setting the 

control limit at 2 will have an average run length of 13.0 years when the system is in 

control and average run length of 1.98 years when it is out of control. These values 

appear reasonable. 

 

However, the choice 2h = with design value 3 is no longer adequate when 5 vaccines 

are involved. If all vaccines are reset upon signalling, then 0ARL 5.61= and 

1ARL 3.12= (Table 7.2), whereas if just signalling vaccines are reset, then 
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0ARL 4.14= and 1ARL 1.96= (Table 7.3). In both cases the 0ARL values are rather too 

short. In this case, using 3h = may be advisable. 

 

In general when monitoring several vaccines, we note that the system 0ARL is much 

shorter than the 0ARL for a single vaccine. Also the ratios 0 1ARL / ARL  were much 

close to 1 especially when trying to detect a smaller relative incidence (design value = 

1.5) as apparent in Table 7.2. It is generally advisable to use large design values( 2 

and 3) and higher control limits. For most of the values we considered, it seems best 

to reset the signalling vaccine only rather than resetting all vaccines. However, this 

may not be the case for more frequent events (higher λ ), in which case it could be best 

to reset all vaccines upon signalling.  

 

It is not possible to suggest a single control limit to use when using the CUSUM 

based on the self-controlled case series method. This will depend on the risk period, 

the baseline incidences for the number of cases, the monitoring interval, the number 

of vaccines under observation, the way the surveillance is to be carried out especially 

when several vaccines are under observation, and the relative incidence to be 

detected. Our results show that a practical system may be possible, but requires 

careful choice of the parameters h and the design value, if we are to avoid swamping 

the system with false positive signals. 

 

Note that even though the ARL is standard practice for evaluating the performance of 

a CUSUM [110], others [111, 116] have argued that the ARL is not ideal because the 

distribution of the run length may be skewed (though for the case series CUSUM, we 

found that median run lengths yielded similar results). Hence one has to be careful as 
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to what inferences can be drawn from an alarm signalled. Certainly an alarm signalled 

by a CUSUM does not constitute proof of causal association. However, among 

various methods for surveillance, it is argued [111, 113] that the ARL for a CUSUM 

is optimal to detect a change that occurs at the specific time. 

   

Overall, a monitoring system using a combination of the SPRT and CUSUM based on 

the self-controlled case series method appears to be feasible, and could prove a very 

useful tool.  
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Chapter 8 

 

Oral vaccines and intussusception 

 

8.1    Introduction:  

 

In this chapter, we describe a study conducted by GlaxoSmithKline (GSK) 

Biologicals to assess the incidence of intussusception in children less than 2 years of 

age in Latin America. We concentrate on an a-posteriori analysis of the data using the 

self-controlled case series method to assess whether intussusception is causally 

associated with oral polio vaccine (OPV). In section 8.2, we describe the background 

and rationale of the study. The objectives and study design are given in section 8.3, 

the study cohort and conduct of the study are described in section 8.4, the descriptive 

analysis is given in section 8.5, further statistical analysis is described in section 8.6, 

and conclusions are given in section 8.7. 

 

8.2 Background and rationale 

 

In August 1998, the first rotavirus vaccine, a tetravalent rhesus human reassortant 

rotavirus vaccine (RRV-TV) manufactured by Wyeth-Lederle (marketed as 

RotaShieldTM) was licensed in the United States of America (USA) and was 

recommended for routine immunisation of infants [68, 117]. The recommendations 

were suspended in July 1999 after the US Centres for Disease Control and Prevention 

(CDC) Adverse Events Reporting System identified 15 children who developed 
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intussusception after administration of the vaccine [69]. Additional epidemiological 

data lending support to a causal link was evident by October, 1999. Wyeth Lederle 

Vaccines and Pediatrics voluntarily withdrew RotaShieldTM from the market, and 

CDC withdrew its recommendation for routine immunisation [118, 119]. Subsequent 

studies showed that RRV-TV is associated with increased risk of intussusception and 

the risk was shown to be highest between 3 to 7 days after the first vaccination dose 

[38, 120]. 

 

For most parents and paediatricians in the USA, the withdrawal of RotaShieldTM was 

disappointing because it meant that the winter burden of severe rotavirus diarrhoea, 

which leads to an estimated 600 000 clinic visits, 50 000-60 000 hospital admissions, 

and 20-40 deaths, might continue for several years before another vaccine became 

available [119, 121]. The international medical community was disappointed because 

a vaccine that might have prevented 440 000 childhood deaths each year, or one in 20 

deaths among children younger than 5 years, would remain a distant hope rather than 

an anticipated reality [122]. The rate of intussusception is not well known world wide, 

but a Cuban study [37] estimated a rate of about 45 per 100,000 live births which was 

similar to that found in the United States over a comparable period [123]. In some 

countries rates lower than those found in the United States have been observed [124].   

 

Intussusception is a fairly uncommon type of acute intestinal obstruction. It occurs 

primarily in young children and is the most frequent cause of an acute abdominal 

emergency in the first 2 years of life. It rarely occurs in adults [125]. Most cases of 

intussusception are considered idiopathic. Children suffering from intussusception 

have problems, for example it is reported that about 5% to 10% of cases of 



 192 

intussusception include an inverted appendiceal stump, Meckel’s diverticulum 

(remnant of the embryonic yolk sac), intestinal polyps, lymphoid hyperplasia, 

hemangioma or lymphosarcoma. Twenty percent of the cases are noted to have upper 

respiratory tract infections [126]. Several other reports have indicated the presence of 

infectious agents in cases of intussusception, but the implications of these findings are 

unclear since most studies do not include a comparison group [127-133].  

 

There is no clear evidence of association between natural rotavirus infection and 

intussusception [132, 134, 135]. Seasonality of rotavirus infection is well documented 

in the USA, and no seasonal variation in the occurrence of intussusception has been 

observed in most studies. Most studies have found that hospitalisation for 

intussusception was evenly distributed throughout the year while rotavirus disease 

peaked during the known season [136, 137]. However, in the Cuban study [37], cases 

showed a marked seasonality with cases peaking in December-May and low in June to 

May. The authors [37] argued that some of the observed seasonality was attributable 

to the seasonality of births in Cuba. In Nigeria, seasonality of intussusception has also 

been reported where most cases occur between October and April [138]. Generally, 

human rotavirus is not considered as a major etiological agent of intussusception in 

infants, though some studies have suggested that rotavirus and other viral epidemics 

may play a role in the aetiology of intussusception [139-141].      

 

Following the withdrawal of the RotaShieldTM vaccine, there remained an urgent need 

for an effective vaccine because of the dramatic disease burden associated with 

rotavirus. The background incidence of intussusception in many countries is not 

known. The World Health Organisation (WHO) ethics workgroup [142] 
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recommended that such data be collected to help assess the risk/benefit ratio for use of 

rotavirus vaccines. Following the rotavirus vaccine experience, concerns arose as to 

whether oral polio vaccines might also be associated with intussusception. Two 

previous studies, both exploratory, had reported a significant increased risk of 

intussusception in the third or fourth weeks after doses of oral polio vaccine (OPV) 

administered at 4 months of age. Other studies have not confirmed these findings [36, 

37, 143] albeit an increased risk after the third dose in the 14-27 days risk period was 

found in one case series study by Andrews et al [36] but this finding was thought to 

have been just a chance finding due to the number of risk periods examined. The 

authors [36] warned of the need for caution when looking at many risk periods 

without an a priori hypothesis . The Food and Drug Administration (FDA) and CDC 

had to tackle uncomfortable questions about how to detect such rare events before 

licensing future vaccines for rotavirus.  

  

GlaxoSmithKline (GSK) Biologicals [144] have developed a new rotavirus vaccine 

based on human rotavirus strain and are currently performing clinical studies world-

wide to evaluate this vaccine. Several studies are currently ongoing in Latin America 

(Argentina, Brazil, Chile, Costa Rica, Honduras, Mexico, Nicaragua, Panama, Peru, 

Dominican Republic, Columbia) to test GSK Biologicals’ rotavirus vaccine in infants. 

In view of the recommendations to obtain intussusception data in different geographic 

settings, GSK Biologicals performed the GSK204 surveillance study described here. 

This was a hospital based multicentre study to assess the incidence of intussusception 

in children less than 2 years of age in Latin America. 
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8.3 Objectives and design of the study 

 

The primary objective in the study was: 

 

To estimate the incidence of intussusception in children less than 24 months of age in 

hospitals in Latin America.  

 

For the purposes of the thesis, we undertook a-posteriori analyses following 

discussions with GSK as part of our collaboration. These analyses were not part of the 

initial objectives when the study was set up. But it was agreed that the data set 

collected may be suitable for the use of the self-controlled case series method to 

investigate the following question:   

  

Is oral polio vaccine associated with an increase in intussusception in children less 

than 24 months of age? 

 

This can be investigated using the self-controlled case series method taking OPV 

vaccination as the exposure. OPV has already been investigated in the UK for 

evidence of causal association with intussusception (Andrews et al [36] ) and in Cuba 

[37]. The purpose of these a-posteriori analyses was to identify if there were any 

causal agents of intussusception other than rotavirus vaccine as found in the US [69].  
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8.4 The study 

 

The study was designed as a hospital-based, multi-centre study.  It was designed to 

enrol all cases of intussusception (definite, probable, possible or suspected) from 

children who received care at participating hospitals and listed on a Screening Sheet. 

Subjects were enrolled during a period of at least one year beginning at study start. 

For the enrolled subjects, the participation in the study consisted of an interview of the 

subjects’ parents. The study was designed to be a self-contained study and the 

duration of the study was at least one year. Collection of data was by using hard copy 

Case Report Form (CRF).   

 

8.4.1 Study cohort and conduct 

 

The target population for enrolment was all subjects seen on an in or out-patient basis 

with confirmed diagnosis of intussusception during a one year period beginning at 

study start. All intussusception cases (definite, probable, possible, and suspected) seen 

at the participating hospitals were included in the study if they fulfilled the eligibility 

criteria. Only subjects whom the investigator believed had met the requirements of the 

protocol [144] were enrolled in the study. It was decided that for the purposes of the 

present analysis, only definite cases were to be analysed.  

 

The inclusion criterion for the cases was as follows: 
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• A male or female infant aged less than twenty four months at the time of 

diagnosis of intussusception (patients became ineligible on the day of their 

second birthday). 

• Subject was diagnosed with definite (radiographically, surgically or by post-

mortem examination), probable, possible or suspected intussusception during 

the period of one year beginning at study start. 

• He or she did not have a radiographically or surgically confirmed case of 

intussusception prior to the current episode. 

• Written informed consent was obtained from the parent or guardian of the 

subject. 

 

The study was conducted according to Good Clinical Practice, the Declaration of 

Helsinki (Protocol [144] Appendix AI) and the International Guidelines  for Ethical 

Review of Epidemiological Studies (Protocol [144] Appendix AII) and logical rules 

and regulations of each participant country. The study was conducted in eleven Latin 

and Central American countries (Argentina, Brazil, Chile, Costa Rica, Honduras, 

Mexico, Nicaragua, Panama, Peru, Dominican Republic, and Columbia) between 

December 2002 and May 2005.  

 

8.4.2 Case finding 

 

Children admitted to or cared for at participating sites for definite, probable, possible, 

suspected intussusceptions were identified by daily reviews of admission logs, 

computerised hospital admission records, emergency department records, surgical 

records and radiology logs. Patients complaining of symptoms of intussusception 
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usually arrived at the admission and entry (A&E) department or outpatient paediatric 

clinics in the participating hospital. On preliminary query diagnosis by the 

paediatricians or A&E medical officers, the patients were admitted into the hospital 

and sent to Diagnostic Imaging for an ultrasound scan. On confirmation of 

intussusception by ultrasound, air enema (usually performed compared to barium) was 

carried out to confirm the diagnosis and reduce the intussusception. If attempts at 

reduction failed, the patient was sent for surgical reduction. If there were perforations 

or necrosis, then resections were carried out. Patients were then sent to the ward to 

recover. Data from each case were then keyed into the hospital computer under the 

ICD code for intussusception. Written informed consent was sought from child’s 

parent or guardian if the child met the eligibility criteria.  

 

8.4.3 Data collection 

 

Data regarding the episode of intussusception including vaccination history, clinical 

symptoms noted on admission, diagnostic procedures, surgical and radiographic 

procedures performed, microbiology results and methods and outcome of admission 

were collected from hospital records, physician records, and vaccination booklets of 

all eligible subjects as well as interviews with parents or guardian.    

 

8.5 Descriptive analyses of the GSK204 data  

 

Overall, there were 531 cases in the GSK204 data set. Of these, 495 received polio 

vaccine, of which 492 had oral polio vaccine and 3 received injected vaccine. As 
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mentioned above, only definite cases that had oral polio vaccine were considered for 

analysis and these were 456. The following analyses are based on these 456 cases. 

 

8.5.1 Distribution of cases by country 

 

Table 8.1 below shows the number of cases per country and when the study started in 

each country.  

 
Table 8.1 Distribution of cases by country 

Country Study Start Study End Number of cases 
Argentina 02-Mar-03 02-Mar-05 40 
Brazil 21-Mar-03 21-Dec-05 16 
Chile 27-Jan-03 31-Jan-05 55 
Costa Rica 17-Jan-02 31-Dec-03 24 
Honduras 27-Jan-03 27-Jan-05 36 
Mexico 06-Jan-03 20-Jan-05 120 
Nicaragua 03-Mar-03 03-Mar-05 9 
Panama 10-Jan-03 10-Jan-05 54 
Peru 30-Sep-03 30-Sep-04 39 
Dominican Republic 20-Jan-03 20-Jan-05 26 
Columbia 02-May-03 02-May-05 37 
 
 

There is much variation in the number of cases across the different countries. Mexico, 

Chile, and Panama seem to have had more cases than the other countries and 

Nicaragua had the fewest number of cases. The numbers of cases vary enormously, 

perhaps in part due to differences in case ascertainment.  
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8.5.2 Sex and age at diagnosis  

 

Overall there were more boys (61%) than girls. A similar finding was made in the UK 

by Andrews et al [36]. Table 8.2 below summarises age at diagnosis in days by 

gender. The mean age at diagnosis did not vary substantially by gender, other than 

some indication that girls on average (mean=231.1 days) were slightly older at 

diagnosis compared to boys (mean=224 days). Age at diagnosis ranged from a 

minimum of 65 days to a maximum of 660 days for girls and from 66 days to 704 

days for boys. Overall the distribution of age at diagnosis was positively skewed 

ranging from 65 days to 704 days with a mean age at diagnosis of 226.8 days and a 

median age of 196.5 days. Figure 8.1 below shows the distribution of age at diagnosis. 

The graph shows that most diagnoses were made between 100 days and 275 days.    

 

Table 8.2 Distribution of age at diagnosis by gender 
Age at diagnosis 

days 
 Median  Mean 

 
Std Dev 

 
Minimum 

 
Maximum 

 
Female 
(176) 

 
202.5 

 
231.1 

 
115.1 

 
65.0 

 
660.0 

Male 
(280) 

 
196.0 

 
224.0 

 
105.5 

 
66.0 

 
704.0 
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Figure 8.1. Distribution of age at diagnosis 
 

8.5.3 Number of doses of OPV received 

 

Children received a maximum of 5 doses of OPV. There was substantial variation in 

the number of doses of OPV received by different individuals. Most children received 

the first dose, the second dose and the third dose. A few children received a fourth, 

and only 12 had a fifth dose. Table 8.3 below shows the number of doses received by 

the children in the data set. 

 
Table 8.3 Distribution of number of individuals who received OPV doses in  
              the 204 data set 
 Dose1 Dose2 Dose3 Dose4 Dose5 Dose12 Dose123 Dose1234 Dose12345 
Yes 426 358 261 86 12 357 257 86 12 
No 30 98 195 370 444 99 199 370 444 
Total 456 456 456 456 456 456 456 456 456 
Dose1 means number of individuals who received first dose, Dose2 means those who 
received  second dose etc, and Dose12 means those who received dose1 and dose 2, 
Dose123 those who received dose1, dose2 and dose3 etc. 
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As one would expect, age at vaccination increases with the dose given. Table 8.4 

below shows this relationship. Further, Figures 8.2 and 8.3 show the distribution of 

age at vaccination for each dose. 

 
Table 8.4 Distribution of age at vaccination 

Age at vaccination 
days 

Dose of OPV 
(Numbers) 

Mean 
days 

Std Dev 
days 

Minimum 
days 

Maximum 
days 

First Dose 
(426) 

 
41.1 

 
36.9 

 
0.0 

 
236.0 

Second Dose 
(358) 

 
102.4 

 
35.1 

 
31.0 

 
206.0 

Third Dose 
(261) 

 
161.0 

 
42.8 

 
57.0 

 
387.0 

Fourth Dose 
(86) 

 
215.3 

 
90.7 

 
118.0 

 
585.0 

Fifth Dose 
(12) 

 
314.4 

 
153.0 

 
179.0 

 
619.0 

 

The age distribution for doses 1, 2 and 3 are markedly bimodal, possibly reflecting 

different vaccination practices in different countries. Table 8.5 below shows the 

distribution of the interval between vaccination and diagnosis of intussusception at 

each dose. The interval between receipt of OPV and diagnosis of intussusception 

ranged from 3 days to 667 days for the first dose, for the second dose, the interval 

ranged from the day of vaccination to 602 days, for the third dose, six cases were 

diagnosed before receiving the third dose, and three cases were diagnosed before 

receiving the fourth dose, and the interval between diagnosis and receipt of 5th dose 

ranged from 8 days to 193 days. This distribution reflects the way vaccination 

histories were collected, namely retrospectively from date of event (other than in the 9 

cases with information on post-event vaccination). 
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Figure 8.2 Distribution of age at vaccination 
 
 

0
10

20
30

40
50

60
F

re
qu

en
cy

100 150 200 250 300 350 400 450 500 550 600
age at vaccination (days)

Fourth dose

0
1

2
3

4
5

6
7

8
9

10
F

re
qu

en
cy

150 200 250 300 350 400 450 500 550 600 650
age at vaccination (days)

Fifth dose

Distribution of age at vaccination

 
Figure 8.3 Distribution of age at vaccination continued 
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Table 8.5 Distribution of interval between vaccination and diagnosis  
             of intussusception. 

Interval between vaccination and diagnosis at each dose 
Dose of OPV 
(Numbers) 

Mean 
days 

Std Dev 
days 

Minimum 
days 

Maximum 
days 

First Dose 
(426) 

 
184.7 

 
115.1 

 
3.0 

 
667.0 

Second Dose 
(358) 

 
139.4 

 
111.6 

 
0.0 

 
602.0 

Third Dose 
(261) 

 
109.7 

 
109.1 

 
-48.0 

 
545.0 

Fourth Dose 
(86) 

 
105.3 

 
103.8 

 
-54.0 

 
482.0 

Fifth Dose 
(12) 

 
93.4 

 
66.7 

 
8.0 

 
193.0 

 
 

8.6 Statistical analysis 

 

To assess the association between OPV and intussusception, the self-controlled case 

series method was used. We used risk periods of 31 days (0-30) after vaccination. We 

also split this into two risk periods, 0-15 and 16-30 days. These risk periods were 

chosen so as to compare with other studies[36, 37, 143]. For each analysis, we 

adjusted for age which was grouped into 24 different age categories of about 30 days 

each, except for the analysis of dose 5. Age was grouped in this way so as to take 

account of age in each month over the 2 years of the maximum possible observation 

period of each individual. For the analysis of dose 5, it was not sensible to have 24 

different age groups as there were only 12 cases. To avoid unbounded estimates due 

to not having cases in some age groups, we grouped age in 5 longer age-groups as 

follows: 0-150 days, 150-300 days, 300-450 days, 450-600 days and 600-750 days.  

 

One requirement of the self-controlled case series method is that the probability of 

exposure should not be affected by the occurrence of an outcome event [7]. In the 
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GSK204 study, the histories of the exposure was recorded when or soon after the 

cases were entered in the study. There was no follow-up after the outcome event and 

hence no information was collected on exposure after entering the study. In such 

situations when using the self-controlled case series method for single exposures, it is 

recommended to define the observation period starting from the exposure up to the 

end of the study (Farrington [2]). However, this study involved five different doses of 

vaccines, giving exposures at five different time points. The self-controlled case series 

method for censoring events has so far been used with one exposure. When there are 

several doses, one has to analyse the data starting with the latest dose first. If there is 

no significant association for this dose then one can analyse the previous dose and 

proceed iteratively in this way. The approach is necessary to avoid bias from 

unobserved exposures after the outcome events. Only if such later doses are not 

associated with the outcome can the current dose be evaluated in an unbiased way. 

Thus, we started by analysing data at dose 5, and only if we got a non significant 

result did we analyse dose 4, moving down the doses in this way. Thus, for the 

analysis of dose k , the observation period is[ ),kv b  where  age at dose kv k=  and 

 age at end of study,b =  and we assume no effect for doses 1, 2,...,5.k k+ +  Hence the 

fact that later doses may be unobserved is immaterial.         

 

Table 8.6 below shows the relative incidences obtained in each analysis for each dose 

and for each risk period. Included in the table is the number of events in each risk 

period at each dose. In all situations the relative incidence is not significantly different 

from 1, indicating no association between vaccination and OPV given at any dose, 

though the effect of dose 5 is very poorly estimated as there are so few cases.  
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Table 8.6 Relative incidence and number of events in risk periods after vaccination 
              for each dose and 95% confidence intervals 
Dose 0-15 days 

RI (95% CI) 
No. of  
events 

16-30 days 
RI (95% CI) 

No. of  
events 

0-30 days 
RI (95% CI) 

No. of 
events 

Opv5 2.79 (0.25, 30.9) 1 5.22 (0.73, 37.4) 1 4.04 (0.67, 24.4) 2 
Opv4 1.01 (0.38, 2.72) 11 0.78 (0.30, 2.06) 7 0.88 (0.38, 2.04) 18 
Opv3 0.71 (0.41, 1.24) 22 0.92 (0.58, 1.46) 28 0.84 (0.55, 1.28) 50 
Opv2 0.86 (0.45, 1.61) 14 1.39 (0.89, 2.17) 28 1.19 (0.79, 1.80) 42 
Opv1 1.34 (0.55, 3.24) 8 0.74 (0.30, 1.85) 7 0.97 (0.48, 1.95) 15 
Opv1, Opv2, etc =Oral polio vaccine given at first dose, second dose etc, RI=relative 
incidence.   
 
 

8.7 Conclusions 

 

The aim of the analysis was to investigate whether incidence of intussusception in 

children less than 24 months of age in hospitals involved in the GSK204 study was 

associated with oral polio vaccine (OPV). The results shown in Table 8.6 do not 

support the hypothesis that OPV is causally related to intussusception. There is no 

evidence of causal relationship at any dose. With the exception of dose 5 the point 

estimates are generally close to unity, with narrow confidence intervals, indicating 

that the analyses have good power. For the dose 5 analysis, there were 12 cases, with 

two cases in the 30 day risk period. In this case, the confidence intervals are very wide 

as one would expect due to lack of power. 

 

One of the advantages of the self-controlled case series method is that it implicitly 

controls for fixed factors, hence in these analyses, fixed factors such as social and 

economic factors, country, sex, and any bias due to individual level confounding, for 

example confounding due to vaccination and unmeasured risk factors for 

intussusception have been taken into account.   
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The rigour in the way the study was conducted and the way the cases were ascertained 

gives us confidence in these findings. Further our analyses were restricted to definite 

cases only. In addition, the cases of intussusception were ascertained independently of 

any perceived link of OPV with intussusception since the primary objective of the 

study was to assess the incidence of intussusception in children less than 24 months of 

age in hospitals involved in the study. The vaccination history of various vaccines in 

each case was then recorded without any focus on a particular vaccine, using data 

from vaccination booklets. 

 

Our earlier findings relating to the properties of the self-controlled case series method 

in chapters 2 and 3, suggest that the self-controlled case series method gives 

effectively unbiased results when the number of cases is at least 20 for a relative 

incidence greater than one.  It is only seriously biased for number of cases of about 10 

if the ratio of the risk period to observation period takes extreme values. In this study, 

the ratio of risk period to observation period was approximately 0.04.The number of 

cases for each dose was all above 50 except for dose 5. Hence we expect estimates at 

each of these doses other than dose 5 not to be substantially biased.  

 

In chapters 4 and 5 we saw that for a ratio of the risk period of about 0.05, with 100 or 

more cases (Table 5.2) one has power of 80% or more to detect a relative incidence of 

at least 3. In this data set, we had well over 100 cases for doses 1 to 3 hence the power 

appears adequate. The power for dose 5, however, is inadequate.    

 

A limitation of the study was the censoring of post-event vaccination histories. This 

would have resulted in some difficulties completing the analysis of all doses had a 
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significant result been obtained at some point. But this was not an issue in these data 

as there was no significant result at any dose. A further problem we would have had to 

consider is the issue of multiple testing. Again here as there was no significant result, 

we did not need to worry unduly about this. Another limitation is the fact that there 

were only 12 cases with dose 5. This resulted in low power and imprecise confidence 

intervals for this dose. A possible solution to this is to obtain bootstrap confidence 

intervals and possibly using multiple imputations for the missing data so as to 

reanalyse the data with similar number of cases as those at first dose.  

 

The study was undertaken with the primary objective of providing baseline 

information for the surveillance of a new rotavirus vaccine. Such surveillance could 

be undertaken using the methods described in chapters 6 and 7. Specifically, as 

surveillance would be focussed on a single new vaccine, the SPRT approach 

described in chapter 6 would be most appropriate. 
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Chapter 9 

 

Conclusions 

 

The first issue we considered in this thesis was to explore some further statistical 

properties of the self-controlled case series method, these were explored in chapter 

two. To this end we derived expressions to second order for the asymptotic bias and 

variance of the estimator of log relative incidence in a simplified setting. These 

enabled us to understand in qualitative terms the impact of quantities such as the 

length of the risk period and the relative incidence on the accuracy and precision of 

the estimates. We studied these effects graphically to examine how the bias, variance, 

and asymptotic mean square error vary with the ratio of the risk period to the 

observation period, and how they vary with the relative incidence at fixed sample 

sizes.  

 

The main finding is that asymptotic bias and variance (and hence AMSE) are smallest 

when the expected number of events within the risk period and outside the risk period 

are equal. The greater the difference between these two expected frequencies, the 

greater the bias and variance. The asymptotic second order expression suggest that 

there is little bias with sample sizes in excess of 20 for the types of scenarios we 

might expect to encounter in practice.  

 

All in all, the self-controlled case series model seems to perform very well. 

Asymptotically, the estimates obtained are not biased. The relative incidence 
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estimator is biased when trying to detect a relative incidence less than one (a situation 

which seldom arises in practice), when the risk period is short, for example 1 day risk 

period and when there are very few cases (for example n=10).   

 

The main limitations of the findings from the expressions of the asymptotic bias, 

variance and AMSE is that they make no allowance for age effects. We did not take 

age into account because the calculations for the bias, variance and AMSE become 

unwieldy. Instead we explored the effect of age in the simulation study reported in 

chapter three. 

 

The results from the simulations were presented starting with what we called the 

‘standard scenario’ which is representative of many studies of paediatric vaccines. In 

the standard scenario we found that the estimates were substantially biased for sample 

sizes of 20 or less, when the true relative incidence was 1≤ . However for relative 

incidence 1.5≥  the biases were moderate even with sample sizes of 10 cases, and 

very small when the number of cases was 50≥ . Risk periods as short as 1 day and up 

to a maximum of 200 days (for a total observation period of 500 days) were 

investigated.  In these situations, the estimates were biased for short risk periods. For 

example when the risk period was 1 day, the bias was large when the relative 

incidence was 0.5 even with 500 cases. Generally speaking, the longer the risk period 

in the range considered (up to 200 days), the less biased the estimates were. 

 

Different age effects classified as weak symmetric, strong symmetric, weak monotone 

increasing, strong monotone increasing were explored as was the effect of different 
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distributions of age at exposure. There was little evidence that these affected the 

performance of the self-controlled case series model.  

 

Indefinite risk periods were looked at. This was done to answer questions by some 

researchers [51, 52] who have argued that the self-controlled case series model may 

not be effective if one is looking at a situation were adverse events may manifest 

themselves a long time after exposure. We explored this issue by extending the risk 

periods to indefinite length.  Results showed that overall there was little bias except 

for large relative incidences and distributions of age at event and age at exposure that 

induce confounding between exposure and age effects. This confounding and the bias 

it generates can be controlled by including unvaccinated cases. 

 

In most situations explored in the simulation study, the coverage probabilities from 

ten thousand samples of different number of cases were in excess of their nominal 

values, even in the presence of substantial bias (see Tables 3.1 to 3.20 inclusive). This 

was not surprising, since when the expected number of event in the risk period is very 

small, the variance of ( )ˆ ˆlogβ ρ=  (where 
ˆˆ = eβρ  is the estimate of the relative 

incidence) is very large, as may be seen from the asymptotic calculations of chapter 2. 

Hence the confidence intervals will themselves be very wide. Confidence intervals 

based on profile likelihood methods may be preferable, but were not investigated. 

 

In chapter 2 we found that when there are no age effects, the magnitude of the 

asymptotic bias depended largely on the imbalance of events in the risk and control 

periods, that is when the expected number of events in the risk period was less than 

that in the control period, the bias was negative, and vice versa. When the two 
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expectations were equal, the bias was zero. The simulation study explored more 

complex situations and finite samples. Qualitatively similar results emerged for a 

given sample size: the bias was greatest in magnitude when the expected number of 

events in the risk period was much smaller than the expected number in the control 

period. In practice, bias is only a real problem when the risk period is very short or 

relative incidence is low. In other circumstances, sample sizes in excess of 20 appear 

to give reliable results. 

 

The overall conclusion from the analytical calculations of Chapter 2 and the 

simulation study of Chapter 3 is that estimates and confidence intervals based on 

asymptotic theory are reliable except in extreme scenarios (namely very small sample 

sizes, very small risk period, low relative incidence).  

 

The next issue to be investigated was to improve the design of self-controlled case 

series studies by obtaining and validating sample size formulae. These were presented 

in chapters 4 and 5. We started off by investigating the first published sample size 

formula by Farrington et al [3] and found that this formula was not accurate. We then 

investigated other approaches. This led us to derive six other sample size formulae, 

one based on the distribution of the logarithm of the relative incidence, three based on 

the binomial distribution and two based on the signed root likelihood ratio statistic. Of 

the six sample size formulae derived, four were found to be accurate. Of the accurate 

sample size formulae, two were based on the binomial distribution namely that using 

a continuity correction and that using the arcsine variance stabilising transformation. 

The other two good formulae were based on the signed root likelihood ratio statistic 

with and without age adjustment. Our overall recommendation in designing a study 
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using the self-controlled case series method without age effects is to use either the 

formula based on the binomial distribution with arcsine variance stabilising 

transformation, or the formula based on the signed root likelihood ratio statistic. If age 

is to be taken into consideration, then there is only one sample size formula to use and 

this is the formula based on the signed root likelihood ratio statistic.    

 

The third topic that we explored was to extend the self-controlled case series method 

to prospective surveillance. We had to find a way of incorporating the retrospective 

self-controlled case series method within a prospective surveillance system. We used 

the ideas of Wald [45] and Page [46] to derive a self-controlled case series based 

sequential probability ratio test (SPRT) and cumulative sum (CUSUM) for use in 

surveillance. Detailed findings are presented in chapters 6 and 7. We envisage using 

the SPRT for focused surveillance of a new vaccine, whereas the CUSUM can be 

used for routine surveillance of several established vaccines. A detailed simulation 

study showing how the SPRT and CUSUM can be applied was illustrated and results 

presented.  

 

A possible limitation of an SPRT and CUSUM surveillance system using the case 

series method is the inability to produce a signal in real time since it is necessarily 

based on retrospective data. One possible solution to this is to make the monitoring 

time interval as short as possible. We used a 6-month monitoring interval. The 

monitoring time interval could be of any length depending on prior knowledge of the 

vaccine being investigated. The surveillance system would rely on routinely collected 

case data for signal detection. Such data have varying degrees of accuracy in 

diagnostic coding. It is for this reason that such a surveillance system should not be 
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viewed as the final confirmatory epidemiologic investigation into potential vaccine-

associated adverse events. However, a system based on the case series method does 

provide stronger evidence of association than signal based solely on spontaneous 

reporting. 

 

Overall, simulation studies showed that the performance of a focused surveillance 

system using the SPRT is as desired. Ideally, we would like a system to be very quick 

to detect a true relative incidence greater than 1 and also if there is no problem we 

would like the process not to cross the upper boundary or possibly signal in favour of 

the null hypothesis. The simulation study showed that the system was able to achieve 

both requirements as indicated both by the probability of crossing the upper boundary 

and also by the average time to detection of a signal.  

 

Using the SPRT with the self-controlled cases series log-likelihood has all the 

advantages of using the self-controlled case series method (in particular control of 

confounders). The other advantage of using the self-controlled case series SPRT  

compared to other methods [79-82] that are frequently used in surveillance systems is 

the prior specification of the Type I and Type II errors. The Type I and Type II errors 

control against making wrong decisions. These error levels apply to the entire SPRT 

process, not to each specific monitoring time interval, and thus the analyses take 

account of multiple testing. The adjustment for multiple testing is not explicit as in the 

Bonferroni adjustment, but rather the adjustment is incorporated into the SPRT in the 

way that the upper and lower boundaries are calculated. These boundaries preserve 

the specific alpha and beta until a final decision is reached as to whether the 

hypothesis should be accepted or rejected. However, for the self-controlled case series 
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based SPRT, we found that the actual Type I and Type II error probabilities were 

lower than the nominal values.  

 

Chapter seven explored how we can use the self-controlled case series method to 

construct CUSUM charts for the long term surveillance of several vaccines in routine 

use. We assessed the performance of the self-controlled case series CUSUM using the 

standard practice of using the average run length (ARL) to select chart thresholds and 

to summarise performance after adapting the definitions of ARL to the surveillance of 

several vaccines. We used this method in preference to the false discovery rate (FDR) 

and successful discovery rate of Marshall et al [110]. We found that our ‘system 

average run length in control’ denoted 0ARL and ‘system average run length out-of-

control’ denoted 1ARL  are practically relevant and interpretable parameters. 

 

The system average run length in control of a self-controlled case series CUSUM 

measures the time interval between false signals when the system is in control. A 

large value of 0ARL is desirable. We found that surveillance of several vaccines 

drastically reduces the 0ARL obtained for a single vaccine. In an effort to increase the 

0ARL we investigated a resetting scheme where all vaccines are reset, not just the 

signalling vaccine. This does indeed increase the system average run length in-

control, but also affects the system average run length out-of-control. 

 

The system average run length out-of-control ( 1ARL ) is an upper limit on the time 

between a problem occurring and when it is detected (it is an upper limit because the 

CUSUM will generally be greater than zero when the problem occurs). Ideally this 
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must be kept small; for example detection within 2 years might be a reasonable 

requirement. 

 

The method of Marshall et al [110] based on the false detection rate of a CUSUM 

applies perhaps more appropriately to the surveillance of large number of units. 

However, it lacks the focus on detection times which is provided by the system 

average run length in control and the system average run length out-of-control 

formulation. In general our findings showed that when monitoring several vaccines, 

the system 0ARL  of the self-controlled based CUSUM is much shorter than the 

0ARL when we are monitoring a single vaccine.  

 

It was not possible to suggest a single control limit to use when using the CUSUM 

based on the self-controlled case series method. This depends on the risk period, the 

baseline incidence for the number of cases, the observation period (monitoring 

interval), the number of vaccines under observation, the way the surveillance will be 

carried out especially when several vaccines are under observation, and the relative 

incidence to be detected. Our results showed that a practical system is possible, but 

require careful choice of the parameters h and the design value, bearing in mind the 

need to avoid swamping the system with false positive signals. 

 

Overall chapter six and seven showed that a monitoring system for a single new 

vaccine based on the self-controlled case series method with the SPRT is feasible, and 

could prove to be a very useful tool. Further work is required to incorporate age 

effects, select optimal values of  and α β  in the case of the SPRT and the best 
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monitoring interval. It is perhaps less clear that a CUSUM-based system for 

monitoring several vaccines would produce reliable results. 

 

In chapter 8 we undertook an analysis of data on intussusception and oral polio 

vaccine. In line with other studies, we did not find strong evidence of association. One 

specific difficulty with these data was how to take account of censoring of exposure 

histories at different doses. We proposed a stepwise estimation procedure, starting at 

the last dose. In the latter part of the chapter we brought to bear the new insights 

obtained in this thesis on the issues of bias and surveillance of new rotavirus vaccines. 

 

The work undertaken in this thesis suggests some avenues for further research. It 

would be interesting to obtain analytic expressions for the asymptotic bias and 

variance of the log relative incidence estimator, allowing for age effects. The sample 

size expression we obtained, taking into account age effects, works for short risk 

periods, but different methods are required for long risk periods. Perhaps most 

importantly, more work is required to design a practical surveillance system using 

SPRT or CUSUM, based on the case series method, taking account of age effects. 
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APPENDIX 1 
 

This appendix contains tables of results from the simulation study to test the performance of the self-controlled case series method under 

different scenarios as described in each table. The terms used in the tables are explained below. 

 

1. 90 CI    Ninety percent confidence interval 

2. 95 CI   Ninety five percent confidence interval 

3. 99 CI  Ninety nine percent confidence interval 

4. %covered   Percentage of the 90%, 95% or 99%  confidence intervals that contain the true relative incidence 

5. %low    Percentage of the 90%, 95% or 99% confidence intervals where the true value was less than the lower limit  

6. %hi    Percentage of the 90%, 95% or 99% confidence intervals where the true value was greater than the upper limit. 

7. RI    Relative incidence 

8. Log(RI)   Logarithm of the relative incidence 

9. Mean    Mean age at vaccination 

10. sd    Standard deviation of  age at vaccination 

11. 10 000 samples Ten thousand samples of ten, twenty, fifty, hundred, five hundred, one thousand cases were simulated  
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12. Median   The median value of the ten thousand estimates was used as a measure of central tendency of the estimates  

13. 1, 5, 10 etc days risk period   These were risk periods selected for particular simulations, for example 1 day, 5 days, etc. 

14.  Indefinite risk period    Sometimes indefinite risk periods were used instead of fixed number of days as in 13 above. 

15. Prop. Vacc.    Standing for proportion vaccinated in a particular simulation. The following proportions were explored, 1, 
5 2 1

, ,
6 3 2

.       
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Table 3.5 Simulation results for 10 
days risk period. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI      Log(RI) 10 000 samples of 20 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693 0.000     −∞  
(5%, 95%, 0%) 
(2%, 98%, 0%) 
(2%, 98%, 0%) 

0.459      -0.879 
(9%,    91%,  0%) 
(2%,   98%,  0%) 
(2%,   98%,   0%) 

0.464      -0.767 
(5%,    93%, 2%) 
(3%,   97%,  0%) 
(1%,   99%,   0%) 

1.000      0.000 0.000    −∞  
(7%, 92%, 1%) 
(6%, 94%, 0%) 
(1%, 99%, 0%) 

0.947 -0.054 
            (6%,  94%,  0%) 
            (3%,  97%,  0%) 

(1%,  99%,  0%) 

0.995      -0.005 
(5%,  90%,  5%) 

(2.9%,  95%,  2.1%) 
(0.6%,  99%,  0.4%) 

1.500      0.405 0.000    −∞   
(7%, 93%, 0%) 
(3%, 97%, 0%) 
(2%, 98%, 0%) 

1.404      0.339 
(5%,  95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

1.504      0.396 
(5%,  91%,  4%) 
(3%,  95%,  2%) 

(0.8%,  99%,  0.2%) 
2.000      0.693 2.070      0.727 

(6%,  94%,  0%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.899      0.641 
(6%,  94%,  0%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.978      0.682 
(5%,  91%,  4%) 
(3%,  96%, 1%) 

(0.7%,  99%,  0.3%) 
5.000      1.609 4.891      1.587 

(4%,  96%, 0%) 
(3%,  97%, 0%) 
(1%,  99%, 0%) 

4.932      1.596 
(6%,  91%, 3%) 
(3%,  96%, 1%) 
(6%,  91%, 3%) 

5.000      1.609 
(6%,  90%, 4%) 
(3%,  95%, 2%) 

(0.6%,  99%, 0.4%) 
10.000      2.303 10.033      2.306 

(6%,  94%,  0%) 
(4%,  96%,  2%) 
(1%,  99%,  0%) 

9.996      2.302 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.7%,  99%,  0.3%) 

9.997      2.302 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.6%,  99%,  0.4%) 
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Table 3.6 Simulation results for 50 
days risk period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI      Log(RI) 10 000 samples of 20 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693 0.443    -0.813 
(6%, 94%, 0%) 
(3%, 97%, 0%) 
(1%, 99%, 0%) 

0.491      -0.712 
   (6%,    92%,  2%) 
   (2%,   97%,  1%) 
  (1%,   99%,   0%) 

0.497      -0.699 
(5%,    91%, 4%) 
(3%,   95%, 2%) 

(0.6%,   99%,   0.4%) 
1.000      0.000 0.944    -0.058 

(6%, 94%, 0%) 
(3%, 97%, 0%) 
(1%, 99%, 0%) 

0.985   -0.015 
(6%,  94%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.997      -0.003 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.6%,  99%,  0.4%) 
1.500      0.405 1.493    0.401 

(6%, 94%, 0%) 
(3%, 97%, 0%) 
(1%, 99%, 0%) 

1.489      0.398 
(5%,  95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

1.495      0.402 
(5%,  90%, 5%) 
(3%,  95%,  2%) 

(0.5%,  99%,  0.5%) 
2.000      0.693 1.964      0.675 

(6%,  94%,  0%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.993      0.690 
(6%,  90%,  4%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

2.000      0.694 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.6%,  99%,  0.4%) 
5.000      1.609 5.137      1.637 

(4%,  96%, 0%) 
(3%,  97%, 0%) 
(1%,  99%, 0%) 

5.035      1.616 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.7%,  99%,0. 3%) 

5.006      1.611 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.6%,  99%, 0.4%) 

10.000      2.303 11.135      2.410 
(6%,  94%,  0%) 
(4%,  96%,  2%) 
(1%,  99%,  0%) 

10.196      2.322 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.7%,  99%,  0.3%) 

10.034      2.306 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.6%,  99%,  0.4%) 
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Table 3.7 Simulation results for 
100 days risk period. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RI      Log(RI) 10 000 samples of 20 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693 0.454    -0.790 
(6%, 90%, 0%) 
(3%, 97%, 0%) 
(1%, 99%, 0%) 

0.493      -0.712 
(6%,    90%,  4%) 
(3%,   95%,  2%) 

(0.7%,   99%,   0.3%) 

0.498      -0.697 
(5%,    91%,  4%) 
(3%,   95%, 2%) 

(0.6%,   99%,   0.4%) 
1.000      0.000 0.984    -0.016 

(6%, 92%, 2%) 
(3%, 97%, 0%) 
(1%, 99%, 0%) 

            0.996   -0.015 
(6%,  94%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

1.003      0.003 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

1.500      0.405 1.510    0.412 
(6%, 91%, 3%) 

(2.6%, 97%, 0.4%) 
(1%, 99%, 0%) 

1.505      0.409 
(5%,  95%,  0%) 

(2.5%,  95%,  2.5%) 
(0.7%,  99%,  0.3%) 

1.499      0.405 
(5%,  90%, 5%) 
(3%,  95%,  2%) 

(0.5%,  99%,  0.5%) 
2.000      0.693 2.031      0.709 

(6%,  91%,  4%) 
(3%,  96%, 1%) 
(1%,  99%,  0%) 

2.013      0.700 
(6%,  90%,  4%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

2.001      0.694 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

5.000      1.609 5.509      1.706 
(6%,  90%, 4%) 
(3%,  95%,2%) 

(0.5%,  99%, 0.5%) 

5.071      1.623 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.7%,  99%,0. 3%) 

5.006      1.611 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.6%,  99%, 0.4%) 

10.000      2.303 11.440      2.437 
(6%,  94%,  0%) 
(4%,  96%,  2%) 
(1%,  99%,  0%) 

10.327      2.335 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

10.058      2.308 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 



 222 

 
Table 3.8 Simulation results for 
200 days risk period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI      Log(RI) 10 000 samples of 20 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

0.500      -0.693 0.478    -0.737 
(5%, 92%, 3%) 

(1.5%, 97%, 1.5%) 
(1%, 99%, 0%) 

0.493      -0.707 
(6%,    90%,  4%) 
(3%,   95%,  2%) 

(0.7%,   99%,   0.3%) 

0.499      -0.695 
(5%,    91%, 4%) 

(2.5%,   95%, 2.5%) 
(0.5%,   99%,   0.5%) 

1.000      0.000 0.993    -0.007 
(5%, 90%, 5%) 

(2.5%, 95%, 2.5%) 
(0.5%, 99%, 0.5%) 

      0.998   -0.002 
      (5%,  95%,  5%) 

           (2.5%,  95%,  2.5%) 
          (0.5%,  99%,  0.5%) 

1.001      0.001 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

1.500      0.405 1.529  0.425 
(5%, 90%, 5%) 

(2.5%, 95%, 2.5%) 
(0.5%, 99%, 0.5%) 

1.505      0.409 
(5%,  95%,  0%) 

(2.5%,  95%,  2.5%) 
(0.7%,  99%,  0.3%) 

1.502      0.407 
(5%,  90%, 5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.000      0.693 2.091      0.737 
(4%,  91%, 5%) 
(2%,  96%, 2%) 

(0.3%,  99%,  0.7%) 

2.008      0.697 
(6%,  90%,  4%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

2.002      0.694 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

5.000      1.609 5.589      1.721 
(6%,  90%, 4%) 
(3%,  95%,2%) 

(0.5%,  99%, 0.5%) 

5.068      1.623 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.7%,  99%,0. 3%) 

5.007      1.611 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

10.000      2.303 12.048      2.489 
(6%,  94%,  0%) 
(4%,  96%,  2%) 
(1%,  99%,  0%) 

10.286      2.331 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

10.038      2.306 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 
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Table 3.9 Simulation 
results for strong 
symmetric age effect .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RI           Log(RI) 10 000 samples of 20 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
     Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

Risk periods 
(days) 

1.000      0.000 
 

0.000    −∞  
(9%, 91%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.814   -0.206 
(5%,  95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.983      -0.018 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.7%,  99%,  0.3%) 

10 

2.000      0.693 
 

1.922      0.653 
(7%,  93%, 0%) 
(4%,  96%, 0%) 
(1%,  99%,  0%) 

1.980      0.683 
(5%,  93%, 2%) 
(3%,  97%, 2%) 
(1%,  99%,  0%) 

1.998      0.692 
(5%,  90%, 5%) 
(3%,  95%,  2%) 

(0.7%,  99%,  0.3%) 

10 

5.000      1.609 
 

4.533     1.511 
(7%,  93%, 4%) 
(4%,  96% ,0%) 
(1%,  99%, 0%) 

4.980      1.605 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.8%,  99%, 0. 2%) 

4.998      1.609 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

10 

1.000      0.000 
 

0.822    -0.196 
(9%, 91%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.967   -0.033 
(5%,  95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.997      -0.003 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.7%,  99%,  0.3%) 

25 

2.000      0.693 
 

1.839      0.609 
(7%,  93%, 0%) 
(4%,  96% ,0%) 
(1%,  99%,  0%) 

1.985      0.685 
(5%,  93%, 2%) 
(3%,  97%, 0%) 

(0.7%,  99%,  0.3%) 

1.997      0.692 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

25 

5.000      1.609 
 

5.281     1.664 
(7%,  93%, 4%) 
(3%,  96%, 1%) 
(1%,  99%, 0%) 

5.049      1.619 
(6%,  90%, 4%) 
(3%,  95%, 2%) 

(0.7%,  99%, 0.3%) 

5.003      1.610 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

25 

    1.000    0.000 
 

0.914    -0.090 
(9%, 91%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.991   -0.009 
(5%,  95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.998      -0.002 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.7%,  99%,  0.3%) 

50 

    2.000    0.693 
 

2.015      0.701 
(7%,  93%, 0%) 
(4%,  96%, 0%) 
(1%,  99%,  0%) 

2.009      0.698 
(5%,  93%, 2%) 
(3%,  97%, 0%) 

(0.7%,  99%,  0.3%) 

2.002      0.694 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.7%,  99%,  0.3%) 

50 

   5.000    1.609 
 

5.462     1.698 
(7%,  93%, 4%) 
(3%,  96%, 1%) 
(1%,  99%, 0%) 

5.090      1.627 
(6%,  90%, 4%) 
(3%,  95%, 2%) 

(0.7%,  99%, 0.32%) 

5.018      1.613 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

50 
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Table 3.10 Simulation 
results for weak 
monotone increasing age 
effect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI             Log(RI) 10 000 samples of 20 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
     Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

Risk periods 
(days) 

1.000      0.000 
 

0.000     −∞  
(9%, 91%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.974   -0.026 
(5%,  95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.983      -0.018 
(5%,  90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.7%,  99%,  0.3%) 

10 

2.000      0.693 
 

2.286      0.827 
(7%,  93%, 0%) 
(4%,  96%, 0%) 
(1%,  99%,  0%) 

1.973      0.679 
(5%,  93%, 2%) 
(3%,  97%, 2%) 

(0.7%,  99%,  0.3%) 

1.985      0.686 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

10 

5.000      1.609 
 

5.094     1.628 
(7%,  93%, 0%) 
(4%,  96% ,0%) 
(1%,  99%, 0%) 

4.915      1.592 
(6%,  90%, 4%) 
(3%,  95%, 2%) 

(0.7%,  99%, 0.3%) 

4.992      1.608 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

10 

1.000      0.000 
 

0.958    -0.043 
(8%, 92%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.983   -0.017 
  (6%, 95%,  1%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.991      -0.009 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.6%,  99%,  0.4%) 

25 

2.000      0.693 
 

1.955      0.670 
(6%,  94%, 0%) 
(4%,  96%, 0%) 
(1%,  99%,  0%) 

1.979      0.683 
(6%,  91%, 3%) 
(3%,  95%, 2%) 

(17%,  99%,  0%) 

1.989      0.688 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

25 

5.000      1.609 
 

4.789     1.566 
(6%,  94%, 0%) 
(3%,  97, 0%) 

(1%,  99%, 0%) 

5.028      1.615 
(5%,  91%, 4%) 
(3%,  95%, 2%) 

(0.6%,  99%, 0.4%) 

5.005      1.610 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

25 

    1.000    0.000 
 

0.958    -0.043 
(8%, 92%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.985  -0.016 
  (6%, 95%,  1%) 

                (3%,  97%,  0%) 
                (1%,  99%,  0%) 

0.998      -0.002 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.5%,  99%,  0.5%) 

50 

    2.000    0.693 
 

1.971      0.679 
(6%,  94%, 0%) 
(4%,  96% ,0%) 
(1%,  99%,  0%) 

1.991      0.689 
(6%,  91%, 3%) 
(3%,  95%, 2%) 

(17%,  99%,  0%) 

2.002      0.694 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

50 

     5.000    1.609 
 

5.231     1.655 
(6%,  90% ,4%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

5.030      1.615 
(5%,  91%, 4%) 
(3%,  95%, 2%) 

(0.6%,  99%, 0.4%) 

5.015      1.612 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

50 
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Table 3.11 Simulation 
results for strong 
monotone increasing age 
effect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI             Log(RI) 10 000 samples of 20 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

10 000 samples of 500 cases 
     Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

Risk periods 
(days) 

1.000      0.000 
 

0.000     −∞  
(8%, 92%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.969  -0.032 
   (6%, 95%,  1%) 
 (3%,  97%,  0%) 
(1%,  99%,  0%) 

0.985      -0.015 
(6%,  90%,  3%) 
(3%,  96%,  1%) 
(1%,  99%,  0%) 

10 

2.000      0.693 
 

2.197      0.787 
(6%,  94%, 0%) 
(4%,  96%, 0%) 
(1%,  99%,  0%) 

1.987      0.686 
(6%,  94%, 0%) 
(4%,  96%, 0%) 
(1%,  99%,  0%) 

1.979      0.683 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

10 

5.000      1.609 
 

4.687     1.545 
(6%,  90%, 4%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

4.957     1.601 
 (6%, 90%, 4%) 

                  (3%,  96%, 1%) 
(1%,  99%, 0%) 

5.000      1.609 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

10 

1.000      0.000 
 

0.941    -0.061 
(8%, 92%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.972  -0.029 
  (6%, 95%,  1%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.995      -0.005 
(5%,  90%,  5%) 
(3%,  95%,  2%) 

(0.7%,  99%,  0.3%) 

25 

2.000      0.693 
 

1.972      0.657 
(6%,  94%, 0%) 
(4%,  96%,0%) 

(1%,  99%,  0%) 

1.981      0.684 
(6%,  94%, 0%) 
(4%,  96%,0%) 

(1%,  99%,  0%) 

2.000      0.693 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(2.5%,  99%, 2.5%) 

25 

5.000      1.609 
 

5.100     1.629 
(6%,  92%, 2%) 
(3%,  97, 0%) 

(1%,  99%, 0%) 

5.031     1.616 
(6%,  90%, 4%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

5.021      1.614 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

25 

    1.000    0.000 
 

0.927    -0.075 
(8%, 92%, 0%) 
(4%, 96%, 0%) 
(2%, 98%, 0%) 

0.989  -0.011 
  (6%, 95%,  1%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

1.000      0.000 
(4.5%,  91%, 4. 5%) 
(2.5%,  95%,  2.5%) 
(0.6%,  99%,  0.4%) 

50 

    2.000    0.693 
 

2.036      0.711 
(6%,  94%, 0%) 
(4%,  96% ,0%) 
(1%,  99%,  0%) 

2.000      0.693 
(5%,  90%, 5%) 

(2.5%,  96%, 1.5%) 
(1%,  99%,  0%) 

2.000      0.693 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(2.5%,  99%, 2.5%) 

50 

    5.000    1.609 
 

5.447     1.695 
(6%,  92% ,2%) 
(3%,  97, 0%) 

(1%,  99%, 0%) 

5.096     1.628 
(6%,  90%, 4%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

5.018      1.613 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%, 0.5%) 

50 
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Table 3.12 Simulation 
results for weak 
symmetric age effect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI              Log(RI) 10 000 samples of 100 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(10 days risk period) 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(25 days risk period) 

10 000 samples of 100 cases 
     Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(50 days risk period) 

Mean  
(  standard deviation) 

1.000      0.000 
 

0.890  -0.117 
(6%, 94%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.970  -0.300 
  (5%, 92%,  3%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.991  -0.093 
    (5%, 91%,  4%) 

(3%,  96%,  1%) 
(0.8%,  99%,  0.2%) 

250 
(50) 

2.000      0.693 
 

1.911      0.648 
(6%,  93%, 1%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.971      0.678 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

1.985      0.686 
(5%,  90%, 5%) 
(3%,  95% ,2%) 

(0.7%,  99%,  0.3%) 

250 
(50) 

5.000      1.609 
 

4.939     1.597 
(5%,  90%,5%) 
(2%,  96, 2%) 

(1%,  99%, 0%) 

5.032     1.616 
(5%,  90%,5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%, 0.2%) 

5.000     1.609 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%, 0.3%) 

250 
(50) 

1.000      0.000 
 

0.984  -0.016 
(6%, 94%,  0%) 
(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.980  -0.020 
  (5%, 92%,  3%) 

                 (3%,  97%,  0%) 
                (1%,  99%,  0%) 

0.986  -0.014 
    (5%, 91%,  4%) 

(3%,  96%,  1%) 
(0.8%,  99%,  0.2%) 

125 
(100) 

2.000      0.693 
. 

1.963      0.674 
(6%,  93%, 1%) 
(3%,  97% ,0%) 
(1%,  99%,  0%) 

1.990      0.688 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

1.996      0.691 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

125 
(100) 

5.000      1.609 
 

4.948     1.599 
(6%,  91%, 3%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

5.007     1.611 
(6%,  90%, 4%) 

                   (3%,  95, 2%) 
(0.6%,  99%, 0.2%) 

5.053     1.620 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%,  0.3%) 

125 
(100) 

    1.000    0.000 
 

0.966  -0.035 
(6%, 94%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.970  -0.030 
  (6%, 93%,  1%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.986  -0.014 
   (6%, 90%,  4%) 

(3%,  96%,  1%) 
(0.6%,  99%,  0.3%) 

125 
(50) 

    2.000    0.693 
. 

1.930      0.657 
(6%,  93%, 1%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.985      0.686 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

1.996      0.691 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

125 
(50) 

    5.000    1.609 
 

4.911     1.591 
(6%,  91%, 3%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

4.991     1.608 
(6%,  90% ,4%) 
(3%,  95, 2%) 

(0.6%,  99%, 0.2%) 

5.041     1.618 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%, 0.3%) 

125 
(50) 
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Table 3.13 Simulation 
results for strong 
monotone increasing age 
effect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RI             Log(RI) 10 000 samples of 100 cases 
          Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(10 days risk period) 

10 000 samples of 100 cases 
Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(25 days risk period) 

10 000 samples of 100 cases 
     Median 

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(50 days risk period) 

Mean  
(  standard deviation) 

1.000      0.000 
 

0.941  -0.061 
(6%, 94%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.970  -0.030 
  (5%, 93%,  1%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.981  -0.019 
   (5%, 91%,  4%) 

(3%,  95%,  2%) 
(0.7%,  99%,  0.3%) 

250 
(50) 

2.000      0.693 
 

1.933      0.659 
(6%,  94%, 0%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.984      0.686 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

1.997      0.692 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

250 
(50) 

5.000      1.609 
 

4.937     1.597 
(6%,  91%,  3%) 

(3%,  96, 1%) 
(1%,  99%, 0%) 

5.018     1.613 
(6%,  90%, 4%) 
(3%,  95, 2%) 

(0.6%,  99%, 0.2%) 

5.085     1.626 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%, 0.3%) 

250 
(50) 

1.000      0.000 
 

0.789  -0.237 
(5%, 95%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.949  -0.052 
  (6%, 94%,  0%) 

(3%,  97%,  0%) 
(1%,  99%,  0%) 

0.974  -0.026 
    (6%, 91%,  3%) 

(3%,  96%,  1%) 
(1%,  99%,  0%) 

125 
(100) 

2.000      0.693 
. 

1.799      0.587 
(6%,  93%, 1%) 
(3%,  97%, 0%) 
(1%,  99%,  0%) 

1.966      0.676 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

2.000      0.693 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

125 
(100) 

5.000      1.609 
 

4.927     1.595 
(6%,  91%, 3%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

5.054     1.620 
(6%,  90%, 4%) 
(3%,  95, 2%) 

(0.6%,  99%, 0.2%) 

5.095     1.628 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%, 0.3%) 

125 
(100) 

    1.000    0.000 
 

0.823  -0.196 
(6%, 94%,  0%) 
(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.962  -0.039 
  (6%, 94%,  0%) 

(4%,  96%,  0%) 
(1%,  99%,  0%) 

0.983  -0.017 
   (5%, 92%,  3%) 

(3%,  97%,  0%) 
(0.4%,  99%,  0.6%) 

125 
(50) 

    2.000    0.693 
. 

1.896      0.640 
(6%,  93%, 1%) 
(3%,  97% , 0%) 
(1%,  99%,  0%) 

1.977      0.686 
(5%,  90%, 5%) 
(3%,  95%, 2%) 

(0.7%,  99%,  0.3%) 

2.022      0.704 
(5%,  90%, 5%) 
(3%,  95%,  2%) 

(0.7%,  99%,  0.3%) 

125 
(50) 

    5.000    1.609 
 

4.949     1.599 
(6%,  91%, 3%) 
(3%,  96, 1%) 

(1%,  99%, 0%) 

5.061     1.622 
(6%,  90%, 4%) 

                   (3%,  95, 2%) 
(0.6%,  99%, 0.2%) 

5.097     1.629 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.6%,  99%, 0.3%) 

125 
(50) 
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Table 3.14 Simulations for indefinite risk period with weak symmetric age effect, 250 days mean age at exposure, with 100 days standard 
deviation. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

RI        Log(RI) 10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(200 cases, Prop. Vacc. 1/2)  
1.000      0.000 1.007     0.007 

(5%, 90%,  5%) 
(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

1.000   0.000 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

0.999    -0.002 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

1.000    0.000 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.000      0.693 2.167      0.704 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.009      0.698 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

2.004      0.695 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.004      0.695 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.000      1.609 5.049     1.619 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.021     1.614 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

5.059     1.621 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.029     1.615 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 
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Table 3.15 Simulations for indefinite risk period with weak symmetric age effect, 125 days mean age at exposure, with 50 days standard 
deviation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
RI        Log(RI) 

10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(200 cases, Prop. Vacc. 1/2)  
1.000      0.000 1.009      0.009 

(5%, 90%,  5%) 
(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

0.999     - 0.001 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

0.999     -0.001 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

1.004       0.004 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.000      0.693 1.993      0.690 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

1.993      0.690 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

2.016      0.701 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.004      0.695 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.000      1.609 5.029     1.630 
(4.5%,  91%, 4.5%) 

(2%,  96, 2%) 
(0.1%,  99%, 0.9%) 

5.160     1.641 
(4.5%,  91% ,4.5%) 

(1%,  96, 3%) 
(0%,  99%, 1%) 

5.223     1.653 
(3%,  92%, 5%) 
(1%,  97, 2%) 

(0%,  99%, 1%) 

5.155     1.640 
(3%,  91%, 6%) 

(2.5%,  96, 1.5%) 
(0%,  99%, 1%) 



 230 

Table 3.16 Simulations for indefinite risk period with strong monotone increasing age effect, 250 days mean age at exposure, with 100 days 
standard deviation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RI         Log(RI) 10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(200 cases, Prop. Vacc. 1/2)  
1.000      0.000 1.002     0.002 

(5%, 90%,  5%) 
(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

0.999        0.001 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

0.996      -0.004 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

0.999     -0.001 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.000      0.693 2.004      0.695 
5%, 90%,  5%) 

(2%,  96%,  2%) 
(0.5%,  99%,  0.5%) 

2.011      0.699 
(5%,  90%, 5%) 

(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

1.997      0.691 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.011      0.699 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.000      1.609 5.130     1.635 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.112     1.632 
(4.5%,  91%, 4.5%) 
(2.5%,  95%, 2.5%) 
(0.5%,  99%,  0.5%) 

5.131     1.635 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

5.077     1.625 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 
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Table 3.17 Simulations for indefinite risk period with strong monotone increasing age effect, 125 days mean age at exposure, with 50 days 
standard deviation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

RI         Log(RI) 10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

(200 cases, Prop. Vacc. 1/2)  
1.000      0.000 1.004      0.004 

(5%, 90%,  5%) 
(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

1.004      0.004 
(5%, 90%,  5%) 

(2%,  96%,  2%) 
(0.5%,  99%,  0.5%) 

1.001     0.001 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.3%,  99%,  0.7%) 

1.005     0.005 
(5%, 90%,  5%) 

(2.5%,  95%,  2.5%) 
(0.5%,  99%,  0.5%) 

2.000      0.693 2.044      0.715 
(5%,  90%, 5%) 
(2%,  96%, 2%) 

(0.1%,  99%,  0.9%) 

2.040      0.713 
(4%,  91%, 5%) 
(2%,  96, 2%) 

(0.1%,  99%,  0.9%) 

2.039      0.712 
(3%, 91%,  6%) 

(1%,  96%,  3%) 
(0%,  99%,  1%) 

2.039      0.713 
(3%, 91%,  6%) 

(1%,  97%,  2%) 
(0%,  99%,  1%)) 

5.000      1.609 5.450     1.696 
(1%,  93%, 6%) 
(2%,  96, 2%) 

(0%,  99%, 1%) 

5.305     1.669 
(0.5%,  94%, 5.5%) 

(0%,  97, 3%) 
(0%,  99%, 1%) 

5.385     1.684 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.314     1.670 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 
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Table 3.18 Simulations for strong monotone increasing age effect and indefinite risk period  

 
 

 
 
 
 
 

RI     Log(RI) 10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(200 cases, Prop. Vacc. 1/2)  

Mean        Sd 

1.000      0.000 0.914     -0.090 
(2%,  96%, 2%) 
(0%,  100, 0%) 

(0%,  100%, 0%) 

0.988     -0.012 
(5%,  91%, 4%) 
(2%,  96, 2%) 

(0%,  100%, 0%) 

1.009     0.009 
(5%,  91%, 4%) 
(2%,  96, 2%) 

(0%,  100%, 0%) 

1.003     0.003 
(1%,  95%, 4%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125          10 

1.000      0.000 1.002     0.002 
(5%,  90%, 5%) 
(2%,  96, 2%) 

(0.5%,  99%, 0.5%) 

0.992     -0.008 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.5%,  99%, 0.5%) 

0.988    - 0.012 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.5%,  99%, 0.5%) 

0.996     -0.004 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0%,  100%, 0%) 

125          20 

1.000      0.000 1.003     0.003 
(5%,  95%, 5%) 

(2.5%,  95, 2.5%) 
(0.5%,  99%, 0.5%) 

1.002    0.002 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.5%,  99%, 0.5%) 

1.001     0.001 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.5%,  99%, 0.5%) 

1.009     0.002 
(4%,  91%, 5%) 
(2%,  96, 2%) 

(0.5%,  99%, 0.5%) 

125           30 

1.000      0.000 1.006     0.006 
(5%,  90%, 5%) 

(2.5%,  95, 2.5%) 
(0.5%,  99%, 0.5%) 

0.999     0.001 
(5%,  90%, 5%) 
(2%,  95, 3%) 

(0%,  99%, 1%) 

1.014     0.014 
(5%,  95%, 5%) 

(2.5%,  95, 2.5%) 
(0%,  100%,0%) 

1.010     0.009 
(4%,  91%, 5%) 
(2%,  96, 2%) 

(0%,  99%, 1%) 

125            40 
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Table 3.19 Simulation for strong monotone increasing age effect and indefinite risk period.  
 

 
 
 
 
 

RI     Log(RI) 10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
 (100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

  
(200 cases, Prop. Vacc. 1/2)  

Mean        Sd 

2.000      0.693 1.850     0.615 
(0%,  96%, 4%) 
(0%,  98, 2%) 

(0%,  100%, 0%) 

1.981     0.684 
(2%,  95%, 3%) 
(0%,  98, 2%) 

(0%,  100%, 0%) 

2.046     0.716 
(4%,  91%, 5%) 
(1%,  96, 3%) 

(0%,  100%, 0%) 

2.071     0.728 
(1%,  95%, 4%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125          10 

2.000      0.693 2.055     0.720 
(2%,  92%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

1.995     0.691 
(5%,  90%, 5%) 
(1%,  96, 3%) 

(0%,  100%, 0%) 

2.051     0.719 
(4%,  91%, 5%) 
(1%,  96, 3%) 

(0%,  100%, 0%) 

2.071     0.728 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125          20 

2.000      0.693 2.038     0.712 
(5%,  95%, 5%) 
(1%,  96, 3%) 

(0%,  99%, 1%) 

2.047    0.764 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

2.058     0.722 
(4%,  92%, 4%) 
(1%,  97, 2%) 

(0%,  100%, 0%) 

2.039     0.712 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125           30 

2.000      0.693 2.056     0.721 
(4%,  92%, 4%) 
(1%,  97, 2%) 

(0.5%,  99%, 0.5%) 

2.024     0.705 
(5%,  90%, 5%) 
(2%,  95, 3%) 

(0%,  99%, 1%) 

2.022     0.704 
(4%,  91%, 6%) 
(1%,  96, 3%) 

(0%,  100%, 0%) 

2.071     0.728 
(3%,  92%, 5%) 
(1%,  97, 2%) 

(0%,  99%, 1%) 

125            40 
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Table 3.20 Simulations for strong monotone increasing age effect and indefinite risk period 

 
 

RI     Log(RI) 10 000 samples of 100 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(100 cases, Prop. Vacc. 1) 

10 000 samples of 120 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

  
(120 cases, Prop. Vacc. 5/6) 

10 000 samples of 150 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

  
(150 cases, Prop. Vacc. 2/3)  

10 000 samples of 200 cases 
Median  

90 CI %low %covered %hi 
95 CI %low %covered %hi 
99 CI %low %covered %hi 

 
(200 cases, Prop. Vacc. 1/2)  

Mean        Sd 

5.000      1.609 7.824     2.824 
(0%,  94%, 6%) 
(0%,  98, 2%) 

(0%,  100%, 0%) 

5.362     1.679 
(2%,  95%, 3%) 
(0%,  98, 2%) 

(0%,  100%, 0%) 

5.253     1.659 
(1%,  95%, 4%) 
(0%,  98, 2%) 

(0%,  100%, 0%) 

5.334     1.674 
(1%,  95%, 4%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125          10 

5.000      1.609 7.506     2.016 
(2%,  92%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.311     1.670 
(2%,  93%, 5%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.374     1.682 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.309     1.669 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125          20 

5.000      1.609 5.660     1.733 
(0%,  93%, 7%) 
(0%,  96, 4%) 

(0%,  99%, 1%) 

5.221     2.445 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.378     1.682 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%,1%) 

5.292     1.666 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

125           30 

5.000      1.609 5.568     1.717 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.223     1.653 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%, 1%) 

5.398     1.686 
(0%,  94%, 6%) 
(0%,  97, 3%) 

(0%,  99%,1%) 

5.303     1.668 
(0%,  94%, 6%) 
(0%,  98, 2%) 

(0%,  99%, 1%) 

125            40 
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APPENDIX 2 

The case series likelihood for the parameters β and , 0,..., 1j j Jα = − is  
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where ijke is the observation time for event i in age group j and risk period 

( ) 0,  unexposed; 1,  exposed= =k k k , and ijkn is the number of events (0 or 1) 

occurring in this period. Note that in the formulation, independent multiple events 

within the same individual are represented as separate terms in the likelihood. 

Suppose now that the jα are regarded as known. The log likelihood ratio for β  is  
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If the event i  occurs in an unexposed individual, its contribution to ( )D β is zero. 

Otherwise, under the assumptions set out in section 5.6.1, 
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where ( )s i is the age group exposure. Thus 
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where x  is the total number of events occurring in a risk period, jm is the total 

number of events occurring in individuals exposed at age ,j and jr is defined in 
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section 5.6.2. The log likelihood ratio reaches its minimum at the maximum 

likelihood estimator ˆ,β  which is the solution of 
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Substituting this expression for x in ( )ˆD β we obtain ( )ˆ .D β  The test statistic upon 

which the sample size calculation is based is  

                          ( ) ( ) ( )ˆ ˆ ˆsgn=T Dβ β β  

The asymptotic variance of β̂  is  
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where the jπ are defined in section 5.6.2. Expanding ( )ˆT β in a Taylor series around 

,β and substituting ( )ˆV β we obtain, to first order in n , 
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Finally, replace jm by jnv , with jv as defined in section 5.6.2. Thus 

( ) ( )( )ˆ sgn ,≈T N nA Bβ β where  and A B are given in equation (5.7). Note that by 

expanding  and A B  to second order in β , it can be shown that 

0 and 1 as 0,→ → →A B β as expected. 
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List of acronyms 

ADRs Adverse Drug Reactions 

A&E Admission and Entry 

AMSE Asymptotic Mean Square Error 

ARL Average Run Length 

0ARL  system Average Run Length in-control 

1ARL system Average Run Length out-control 

BCPNN Bayesian Confidence Propagation Neural Network 

CCR Coded Clinical Records  

CDC Centres for Disease Control and prevention 

CI Confidence Interval 

CRF Case Report Form 

CUSUM Cumulative Sum 

DTP Diphteria Tetanus Pertussis 

FDA Food and Drug Administration 

FDR False Discovery Rate 

GSK GlasxoSmithKline 

GPRD General Practice Research Database 

HES Hospital Episode Statistics 

0H  Null hypothesis 

1H  Alternative Hypothesis 

ICD International Classification of Diseases 

ITP Idiopathic Thrombocytpenic Purpura 

MCSE Monte Carlo Standard Error 

MHRA Medicines and Healthcare products Regulatory Agency 
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MMR Measles Mumps and Rubella 

OPV Oral Polio Vaccine 

PAS Patient Administration System 

PRR Proportional Reporting Ratios 

RI Relative Incidence 

0RI Relative Incidence under the null hypothesis 

1RL The design Relative Incidence value used in the SPRT 

2RL The actual Relative Incidence value used to generate data 

RRV-TV Tetravalent Rhesus Human Reassortant Rotavirux Vaccine 

ROR Reporting Odds Ratios 

SCCS Self-Controlled Case Series 

SCCSM Self-Controlled Case Series Method 

SDR Successful Discovery Rate 

SPC Statistical Process Control 

SPRT Sequential Probability Ratio Test 

UK United Kingdom 

USA United States America 

 US United States 

VAERS Vaccine Adverse Event Reporting System 

VSD Vaccine Safety Datalink 

WHO World Health Organisation 
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APPENDIX 3 
 

Papers published or submitted from the thesis 

Sample sizes for self-controlled case series studies [44] (Covering chapter 4 and 

5). 

Self-controlled case series analyses: small sample performance[145] (Covering 

chapter 2 and 3). 

Tutorial in Biostatistics: The self-controlled case series method [7] (Covering part 

of chapter 4). 

 



 240 

 
                         

References: 
 
[1]. Philips EM and Pugh DS, How to get a PhD, a handbook for students and their 

supervisors. 3rd ed. 2000, Maidenhead, Philadelphia: Open University Press. 
pp50-51. 

[2]. Farrington CP, Relative incidence estimation from case series for vaccine 
evaluation. Biometrics, 1995. 51: p. 228-235. 

[3]. Farrington CP, Nash J, and Miller E, Case series analysis of adverse reactions 
to vaccines: a comparative evaluation. American Journal of Epidemiology, 
1996. 143: p. 1165-1173 (Erratum 1998; 147:93). 

[4]. Hubbard R, Farrington CP, Smith C, Smeeth L, and Tattersfield A, Exposure 
to tricyclic and selective serotonin inhibitor antidepressants and the risk of hip 
fracture. American Journal of Epidemiology, 2003. 158: p. 77-84. 

[5]. Hocine M, Guillemot D, Tubert-Bitter P, and Moreau T, Testing independence 
between two poisson-generated multinomial variables in case series and cohort 
studies. Statistics in Medicine, 2005. 24: p. 4035-4044. 

[6]. Becker NG, Li Z, and Kelman CW, The effect of transient exposures on the 
risk of an acute illness with low hazard rate. Biostastics, 2004. 5: p. 239-248. 

[7]. Whitaker HJ, Farrington CP, Spiessens B, and Musonda P, Tutorial in 
Biostatistics: The self-controlled case series method. Statistics in Medicine, 
2006. 25: p. 1768-1797. 

[8]. Farrington CP and Whitaker HJ, Semiparametric analysis of case series data. 
Applied Statistics, 2006. 55(Part 5): p. 553-594. 

[9]. Farrington CP, Pugh S, Colville A, Flower A, Nash J, Capner P, Rush M, and 
Miller E, A new method for active surveillance of adverse events from 
diphtheria/tetanus/pertussis and measles/mumps/rubella vaccines. Lancet, 
1995. 345: p. 567-5699. 

[10]. Miller E, Goldacre M, Pugh S, Colville A, Farrington CP, Flower A, 
MacFarlane l, and Tettmar R, Risk of aseptic menigitis after measles, mumps 
and rubella vaccine in UK children. Lancet, 1993. 341: p. 979-982. 

[11]. Ray WA and Griffin MR, Use of Medicaid data for pharmaco-epidemiology. 
American Journal of Epidemiology, 1989. 129: p. 837-849. 

[12]. Altman DG, Practical Statistics for Medical Research. 1991, London: 
Chapman & Hall. pp93-94. 

[13]. Fine PE and Chen RT, Confounding in studies of adverse reactions to 
vaccines. American Journal of Epidemiology, 1992. 136: p. 121-135. 

[14]. Smeeth L, Donnan PT, and Cook DG, The use of primary care databases: 
case-control and case-only designs. Family Practice, 2006. 23: p. 597-604. 

[15]. Aelen OO, Borgan O, Keiding N, and Thorman J, Interaction between life 
history events: nonparametric analysis for prospective and retrospective data 
in the presence of censoring. Scandinavian Journal of Statistics, 1980. 7: p. 
161-171. 

[16]. Prentice RL, Vollmer WM, and Kalbfleisch JD, On the use of case series to 
identify disease risk factors. Biometrics, 1984. 40: p. 445-458. 

[17]. Maclure M, The case-crossover design: a method for studying transient effects 
on the risk of acute events. American Journal of Epidemiology, 1991. 133: p. 
144-153. 



 241 

[18]. Vines SK and Farrington CP, Within-subject exposure dependency in case-
crossover studies. Statistics in Medicine, 2001. 20: p. 3039-3049. 

[19]. Greenland S, A unified approach to the analysis of case-distribution (case-
only) studies. Statistics in Medicine, 1996. 18: p. 1-15. 

[20]. Maclure M and Mittleman MA, Should we use a case-cross-over design? 
Annual Review of Public Health, 2000. 21: p. 193-221. 

[21]. Feldmann U, Epidemiologic assessment of risks of adverse reactions 
associated with intermittent exposure. Biometrics, 1993. 49: p. 419-428. 

[22]. Marshall RJ and Jackson RT, Analysis of case-crossover designs. Statistics in 
Medicine, 1993. 12: p. 2333-2341. 

[23]. Andrews NJ, Statistical assessment of the association between vaccination and 
rare adverse events post licensure. Vaccine, 2002. 20: p. S49-S53. 

[24]. Farrington CP, Control without separate controls: evaluation of vaccine safety 
using case-only methods. Vaccine, 2004. 22: p. 2064-2070. 

[25]. Navidi W, Bidirectional case-cross-over designs for exposures with time 
trends. Biometrics, 1998. 54(2): p. 596-605. 

[26]. Lumley T and Levy D, Bias in the case-crossover design: implications for 
studies of air pollution. Environmetrics, 2000. 11: p. 689-704. 

[27]. Miller E, Waight P, Stowe J, and Taylar B, Idiopathic thrombocytopenic 
purpura and MMR vaccine. Archives of Diseases in Childhood, 2001. 84: p. 
227-229. 

[28]. Dourado I, Cunha S, Teixeira MDG, Farrington CP, Melo A, Lucena R, and 
Barreto ML, An outbreak of aseptic meningitis associated with a Urabe-
containing MMR mass vaccination campaign: implications for immunisation 
programs. American Journal of Epidemiology, 2000. 151: p. 524-530. 

[29]. Taylor B, Miller E, Farrington CP, Petropoulos M-C, Favot-Mayaud I, and 
Waight PA, Autism and measles, mumps and rubella vaccine: no 
epidemiological evidence for a causal association. Lancet, 1999. 353: p. 2026-
2029. 

[30]. Farrington CP, Miller E, and Taylor B, MMR and autism: further evidence 
against a causal association. Vaccine, 2001. 19: p. 3632-3635. 

[31]. Miller E, Andrews N, Waight P, and Taylor B, Bacterial infections, immune 
overload, and MMR vaccine. Archives of Diseases in Childhood, 2003. 88: p. 
222-223. 

[32]. Miller E, Andrews N, Grant A, Stowe J, and Taylor B, No evidence of an 
association between MMR vaccine and gait disturbance. Archives of Diseases 
in Childhood, 2005. 90: p. 292-296. 

[33]. Kramarz P, DeStafano F, Gargiullo PM, et al, Does influenza vaccination 
exacerbate asthma? Analysis of a large cohort of children with asthma. Arch 
Farm Med., 2000. 9: p. 617-623. 

[34]. Tata LJ, West J, Harrison T, Farrington CP, Smith C, and Hubbard R, Does 
influenza vaccination increase consultations, corticosteroid prescriptions or 
exacerbations in people with asthma or chronic obstructive pulmonary 
disease? Thorax, 2003. 58: p. 835-839. 

[35]. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, and 
Steffen R, Use of the inactivated intranasal influenza vaccine and the risk of 
bell's palsy in Switzerland. New England Journal of Medicine, 2004. 350: p. 
896-903. 

[36]. Andrews N, Miller E, Waight P, Farrington CP, Crowcroft N, Stowe J, and 
Taylor B, Does oral polio vaccine cause intussusception in infants? Evidence 



 242 

from a sequence of three self-controlled case series studies in the United 
Kingdom. European Journal of Epidemiology, 2001. 17: p. 701-706. 

[37]. Galindo Sardiñas MA, Zambrano Cárdenas A, Coutin Marie G, Santin Peña 
M, Aliño Santiago M, Valcárcel Sachez M, and Farrington CP, Lack of 
association between intussusception among infants given an oral polio vaccine 
in Cuban children. European Journal of Epidemiology, 2001. 17: p. 783-787. 

[38]. Murphy TV, Garguillo PM, Massoudi MS, Nelson DB, Jumaan AO, Okoro 
CA, Zanardi LR, Setia S, E. F, LeBaron CW, Wharton M, and Livingood JR, 
Intussusception among infants given an oral rotavirus vaccine. New England 
Journal of Medicine, 2001. 344: p. 564-572. 

[39]. Mullooly JP, Pearson J, Drew L, Sculer R, Maher J, Gargiullo P, De Stefano 
F, and Chen R, et al, Wheezing lower respiratory disease and vaccination of 
full-term infants. Pharmacoepidemiology and drug safety, 2002. 11: p. 21-30. 

[40]. Tata LJ, West J, Smith C, Farrington CP, Card T, Smeeth L, and Hubbard R, 
General population based study of the impact of tricyclic and selective 
serotonin reuptake inhibitor antidepressants on the risk of acture myocardial 
infarction. Heart, 2005. 91: p. 465-471. 

[41]. France EK, Glanz JM, Xu S, Davis RL, Black S, Shinefield H, Zangwill KM, 
Marcy SM, Mullooly JP, Jackson LA, and Chen R, Safety of the trivalent 
inactivated influenza vaccine among children-a population based study. 
Archives of Pediatrics and Adolescent Medicine, 2004. 158: p. 1031-1036. 

[42]. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington CP, and Vallance P, 
Risk of myocardial infarction and stroke after acute infection or vaccination. 
New England Journal of Medicine, 2004. 351: p. 2611-2618. 

[43]. Glanz JM, McClure DL, Xu S, Hambidge SJ, Lee M, Kolczak MS, Kleinman 
K, Mullooly JP, and France EK, Four different study designs to evaluate 
vaccine safety were equally validated with contrasting limitations. Journal of 
Clinical Epidemiology, 2006. 59: p. 808-818. 

[44]. Musonda P, Farrington CP, and Whitaker HJ, Sample sizes for self-controlled 
case series studies. Statistics in Medicine, 2006. 25: p. 2618-2631. 

[45]. Wald A, Sequential analysis. 1947, New York: Wiley. 
[46]. Page ES, Continuous inspection schemes. Biometrika, 1954. 41: p. 100-115. 
[47]. Griffin MR, Ray WA, and Livengood JR, et al, Risk of seizures and 

encephalopathy after immunization with the Diphtheria Tetanus-Pertussis 
vaccine. JAMA, 1990. 263: p. 1641-1645. 

[48]. McCullagh P and Nelder JA, Generalized Linear Models. second ed. 1989: 
Chapman &Hall/CRC. p 209. 

[49]. Johnson NL, Kotz S, and Kemp AN, Univariate Discrete Distribution. 1993: 
John Wiley & Sons Inc. pp106-107. 

[50]. Cox DR and Hinkley DV, Theoretical Statistics. 1979, London: Chapman and 
Hall. p252. 

[51]. Holmes V, A Possible Association Between MMR  and Autism: An 
Examination of Case Series Analysis, in Department of Applied Statistics. 
2001, University of Reading: MSc Dissertation. 

[52]. Spitzer WO, A sixty day war of words: is MMR linked to autism? Adverse 
Drug Reaction Toxological Review, 2001. 20: p. 47-63. 

[53]. Armitage P, Statistical Methods in Medical Research. (1971). Blackwell 
scientific publications. p96-97. 

[54]. Fleiss JL, Levin B, and Paik MC, Statistical Methods for Rates and 
Proportions. 3rd ed. 2003, New Jersey: John Wiley & Sons. p31-33. 



 243 

[55]. Chernick MR and Liu CY, The Saw-Toothed Behaviour of Power Versus 
Sample Size and Software Solutions: Single Binomial Proportion Using Exact 
Methods. The American Statistician, 2002. 56(p149-155). 

[56]. Cesana BM, Reina G, and Marubin E, Sample size for testing a proportion in 
clinical trials. "Two-step" Procedure Combining Power and Confidence 
Interval Expected width. The American Statistician, 2001. 55: p. 288-292. 

[57]. Brown LD, Cai TT, and DasGupta A, Interval Estimation for a Binomial 
Proportion (with discussion). Statistical Science, 2001. 16: p. 101-133. 

[58]. Hoehler FK, Exact Power Calculations when the Dependent Variables is a 
Single Proportion and the Number of Events is Small. Comput. Biol. Med., 
1995. 5: p. 447-449. 

[59]. Thomas RG and Conlon M, Sample size determination based on Fisher's exact  
test for use in  comparative trials with low event rates. Controlled Clin. Trials, 
1992. 13: p. 134-147. 

[60]. Matthews JNS, An Introductions to Randomized Controlled Clinical Trials. 
2000, London: Arnold. p30-31. 

[61]. Chen RT, Rastogi SC, and Mullen JR, The Vaccine Adverse Event Reporting 
System (VAERS). Vaccine, 1994. 12: p. 542-550. 

[62]. Olsson S, The role of the WHO programme on International Drug Monitoring 
in coordinating worldwide drug safety efforts. Drug safety, 1998. 19: p. 1-10. 

[63]. Rosenthal S and Chen RT, The reporting sensitivities of two passive 
surveillance systems for vaccine adverse events. American Journal of Public 
Health, 1995. 85: p. 1706-1709. 

[64]. Zhou W, Pool V, De Stefano F, Iskander JK, Haber P, and Chen RT, A 
potential signal of Bell's palsy after parenteral inactivated influenza vaccines: 
reports to the Vaccine Adverse Event Reporting System (VAERS)-United 
states, 1991-2001. Pharmacoepidemiology and drug safety, 2004. 13: p. 505-
510. 

[65]. Varicchio F, Iskander J, DeStefano F, et al, Understanding vaccine safety: 
information from the Vaccine Adverse Event Reporting System (VAERS). 
Paediatric Infectious Disease Journal, 2004. 23: p. 1-8. 

[66]. McMahon AW, Iskander J, Haber P, Chang S, Woo EJ, Braun MM, and Ball 
R, Adverse Events After Inactivated Influenza Vaccination Among Children 
Less Than 2 Years of Age: Analysis of Reports From Vaccine Adverse Event 
Reporting System, 1990-2003. Pediatrics, 2005. 115: p. 453-460. 

[67]. Murphy TV, Gargiullo PM, Massoudi MS, et al, Intussusception among 
infants given an oral rotavirus vaccine. New England Journal of Medicine, 
2001. 344: p. 564-572. 

[68]. AAP, Prevention of rotavirus disease: guidelines for use of rotavirus vaccine. 
Pediatrics, 1998. 102: p. 1483-1491. 

[69]. CDC, Intussusception among recipients of rotavirus vaccine. MMWR Morb 
Mortal Wkly Rep, 1999. 48: p. 577-581. 

[70]. Spiegelhalter DJ, Grigg OA, Kinsman R, and Treasure T, Risk-adjusted 
sequential probability ratio tests: applications to Bristol, Shipman and adult 
cardiac surgery. International Journal for Quality in Health Care, 2003. 15(1): 
p. 7-13. 

[71]. Shewhart WA, The economic control of quality of manufactured product. 
1931, New York: D. Van Nostrand and Co. 



 244 

[72]. Deming WE, Quality, productivity, and competitive position. 1982, 
Cambridge, MA, USA: Massachusetts Institute of Technology Center for 
Advanced Engineering Studies. 

[73]. Deming WE, On classification of the problems of statistical inference. Journal 
of the American Statistics Association, 1942. 37: p. 173-185. 

[74]. Steiner SH, Cook RJ, Farewell VT, and Treasure T, Monitoring surgical 
performance using risk-adjusted cumulative sum charts. Biostatistics, 2000. 
1(4): p. 441-452. 

[75]. Benneyan JC and Borgman AD, Risk-adjusted sequential probability ratio 
tests and longitudinal surveillance methods. International Journal for Quality 
in Health Care, 2003. 15(1): p. 5-6. 

[76]. Bates DW, The costs of adverse drug events in hospitalised patients. Journal 
of Amrican Medical Association, 1997. 277: p. 307-311. 

[77]. Bogner MS, Human error in Medicine. 1994, Hillside: NJ: Erlbaum. 
[78]. Leape LL, Error in Medicine. Journal of American Medical Association, 1994. 

272: p. 1851-1857. 
[79]. Evans SJW, Waller PC, and Davis S, Use of proportional reporting ratios 

(PRRs) for signal generation from spontaneous adverse drug reaction reports. 
Pharmacoepidemiology and drug safety, 2001. 10: p. 483-486. 

[80]. Rothman KJ, Lanes S, and Sacks ST, The reporting odds ratio and its 
advantages over the proprotional reporting ratio. Pharmacoepidemiology and 
drug safety, 2004. 13: p. 519-523. 

[81]. Waller PC, van Puijenbroek EP, Egberts ACG, and Evans SJW, The reporting 
odds ratio versus the proportional reporting ratio: 'deuce'. 
Pharmacoepidemiology and drug safety, 2004. 13: p. 525-526. 

[82]. van Puijenbroek EP, Bate A, Leufkens HGM, Linddquist M, Orre R, and 
Egberts ACG, A comparison of measures of disproportionality for signal 
detection in spontaneous reporting systems for adverse drug reactions. 
Pharmacoepidemiology and drug safety, 2002. 11: p. 3-10. 

[83]. Linddquist M, Ståhl M, Bate A, Edwards IR, Fucik H, and Nunes AM, From 
association to alert-a revised approach to international signal analysis. 
Pharmacoepidemiology and drug safety, 1999. 8: p. S15-S25. 

[84]. Linddquist M, Ståhl M, Bate A, Edwards IR, and Meyboom RH, A 
retrospectiv evaluation of a data mining approach to aid finding new adverse 
drug reaction signals in the WHO international database. Drug safety, 2000. 
23: p. 533-542. 

[85]. Bate A, Linddquist, M, Edwards, IR, et al., A Bayesian neural network method 
for adverse drug reaction signal generation. European Journal of clinical 
pharmacology, 1998. 54: p. 315-321. 

[86]. Tillett HE and Spencer IL, Influenza surveillance in England and Wales using 
routine statistics. Development of 'cusum' graphs to compare 12 previous 
winters and to monitor the 1980/81 winter. J.Hyg., Camb, 1982. 88: p. 83-94. 

[87]. Choi K and Thacker SB, An evaluation of influenza mortality surveillance. 
Time series forecasts of expected pneumonia and influenza deaths. American 
Journal of Epidemiology, 1981. 113: p. 215. 

[88]. Hutwagner LC, Maloney EK, Bean NH, Slutsker L, and Martin SM, Using 
Laboratory-Based Surveillance Data for Prevention: An Algorithm for 
Detecting Samonella Outbreaks. Emerging Infectious Diseases, 1997. 3(3): p. 
395-400. 



 245 

[89]. Benneyan JC, Number-between g-type statistical control charts for monitoring 
adverse events. Health Care Management Science, 2001. 4: p. 305-318. 

[90]. Bourke PD, Detecting a shift in fraction nonconforming using run-length 
control charts with 100% inspection. Journal of Quality Technology, 1991. 23: 
p. 225-238. 

[91]. Reynolds MR and Stoumbos ZG, The SPRT chart for monitoring a proportion. 
IIE Transactions, 1998. 30: p. 545-561. 

[92]. Grigg OA, Farewell VT, and Spiegelhalter DJ, Use of risk-adjusted CUSUM 
and RSPRT charts for monitoring in medical contexts. Statistical Methods in 
Medical Research, 2003. 12: p. 147-170. 

[93]. Wald A, Sequential tests of statistical hypotheses. Ann Maths Statist, 1945. 6: 
p. 117-186. 

[94]. Bartholomay AF, The sequential probability ratio test applied to the design of 
clinical experiments. New England Journal of Medicine, 1957. 256: p. 498-
505. 

[95]. Armitage P, Sequential tests in prophylactic and therapeutic trials. Q J Med, 
1954. 23: p. 255-274. 

[96]. Barnard GA, Sequential test in industrial statistics (with discussion). J R 
Statist Soc, 1946. 8(suppl.): p. 1-26. 

[97]. Steiner SH, Geyer PL, and Wesolowsky GO, Grouped Data-Sequential 
Probability Ratio Tests and Cumulative Sum Control Charts. Technometrics, 
1996. 38(3): p. 230-237. 

[98]. Davis RL, Kolczak M, Lewis E, Nodin J, Goodman M, Shay DK, Platt R, 
Black S, Shinefield H, and Chen RT, Active Surveillance of Vaccine Safety, A 
system to Detect Early Signs of Adverse Events. Epidemiology, 2005. 16(3): 
p. 336-341. 

[99]. Chen RT, Glasser, J.W, Rhodes, P.H, et al, Vaccine Safety Datalink Project: a 
new tool for improving vaccine safety monitoring in the United States. 
Pediatrics, 1997. 99: p. 765-773. 

[100]. Clayton D and Hills M, Statistical Models in Epidemiology. 1st ed. 1993, New 
Yook: Oxford University Press Inc., New York. 

[101]. SAS/STAT® User's Guide. Version 8.2 (2nd edn). 1999-2001, SAS Institute, 
Inc.: Cary, NC. 

[102]. Barnard GA, Control Charts and stochastic processes. Journal of the Royal 
Statistical Society, Series B, 1959. 21: p. 239-271. 

[103]. Montgomery DC, Introduction to Statistical Quality Control. 2nd ed. 1991, 
New York: John Wiley and Sons. 

[104]. Gallus G, Mandelli C, Marchi M, and Radeaelli G, On surveillance methods 
for congenital malformations. Statistics in Medicine, 1986. 5: p. 565-571. 

[105]. Nix AB, Rowlands RJ, and Kemp KW, Internal quality control in clinical 
chemistry: a teaching review. Statistics in Medicine, 1986. 6: p. 425-440. 

[106]. Williams SM, Parry BJ, and Schlup MM, Quality control: an application of 
the CUSUM. British Medical Journal, 1992. 304: p. 1359-1361. 

[107]. DeLeval, Marc R, François K, Bull C, Brawn WB, and Speigelhalter DJ, 
Analysis of a cluster of surgical failures. The Journal of Thoracic and 
Cardiovascular Surgery, 1994. 104: p. 914-924. 

[108]. Steiner SH, Cook RJ, and Farewell VT, Monitoring paired binary surgical 
outcomes using cumulative sum charts. Statistics in Medicine, 1999. 18: p. 69-
86. 



 246 

[109]. Ross G, Lampugnani L, and Marchi M, An approximate CUSUM procedure 
for surveillance of health events. Statistics in Medicine, 1999. 18: p. 2111-
2122. 

[110]. Marshall C, Best N, Bottle A, and Aylin P, Statistical issues in the prospective 
monitoring of health outcomes across multiple units. Journal of Royal 
Statistical Society Series A, 2004. 167(Part 3): p. 541-559. 

[111]. Frisén M, Evaluations of methods for statistical surveillance. Statistics in 
Medicine, 1992. 11: p. 1489-1502. 

[112]. Brook D and Evans DA, An approach to the probability distribution of cusum 
run length. Biometrika, 1972. 3: p. 539-549. 

[113]. Moustakides GV, Optimal stopping times for detecting changes in 
distributions. Annals of Statistics, 1986. 14(4): p. 1379-1387. 

[114]. Goel AL and Wu SM, Determination of ARL and contour nomogram for 
cusum charts to control normal mean. Technometrics, 1971: p. 221-230. 

[115]. Khan RA, On cumulative sum procedures and the sprt with applications. 
Journal of the Royal Statistical Society, Series B, 1984. 46(1): p. 79-85. 

[116]. Woodall WH, The distribution of the run length of one-sided CUSUM 
procedures for continuous random variables. Technometrics, 1983. 25: p. 295-
301. 

[117]. CDC, Rotavirus vaccine for the prevention of rotavirus gastroenteritis among 
children-recommendations of the Advisory Committee on Immunization 
Practices (ACIP). MMWR Recomm. Rep., 1999. 48: p. 1-20. 

[118]. CDC, Withdrawal of rotavirus vaccine recommendation. MMWR Morb. 
Mortal. Wkly. Rep., 1999. 48: p. 1007. 

[119]. Glass RI, Bresee JS, Parashar UD, Jiang B, and J G, The future of rotavirus 
vaccines: a major setback leads to new opportunities. Lancet, 2004. 363: p. 
1547-1550. 

[120]. Kramarz P and France EK, et al., Population-based study of rotavirus 
vaccination and intussusception. Paediatric Infectious Disease Journal, 2001. 
20: p. 410-416. 

[121]. Tucker AW, Haddix A, Bresee JS, Holman RC, Parashar UD, and Glass RI, 
Cost-effectiveness analysis of a rotavirus immunization program for the 
United States. JAMA, 1998. 279: p. 1371-1376. 

[122]. Parashar UD, Hummelman EG, Bresee JS, Miller M, and Glass RI, Global 
illness and deaths caused by rotavirus disease in children. Emerg Infect Dis, 
2003. 9: p. 565-572. 

[123]. Parashar UD, Holman, R.C, Cumming, K.C, et al, Trends in intussusception-
associated hospitalizations and deaths among US infants. Pediatrics, 2000. 
106: p. 1413-1421. 

[124]. Stringer MD, Pablot SM, and Brereton RJ, Pediatric intussusception. Br J 
Surg, 1992. 79: p. 867-876. 

[125]. Behrman RE, Kliegman RM, and Arvin AM, Wyllie R. Ileus, adhesions, 
intussusception and closed-loop obstructions.: Nelsons Textbook of Pediatrics. 
Chapter 29:1072-1074. 

[126]. Hong-Yuan H, et al, Viro etiology of intussusception in Taiwanese childhood. 
Paediatric Infectious Disease Journal, 1998. 17: p. 893-898. 

[127]. Konno T, et al, HRV infection in infants and young children with 
intussusception. Journal of Medical Virology, 1978. 2: p. 265-269. 

[128]. Bell TM, et al, Virases in Lymph nodes of children with mesenteric adenitis 
and intussusception. British Medical Journal, 1962. 2: p. 700-702. 



 247 

[129]. Potter CW, et al, Adenovirus infection as an etiological factor in 
intussuception of infants and young children. Journal of Pathology and 
Bacteriology, 1964. 82: p. 263-274. 

[130]. Calico I, et al, Viral infections associated with intestinal invaginatioon. Enferm 
Infec Microbiol Clin, 1990. 8: p. 406-410. 

[131]. Nicolas JG, et al, A one-year virological survey of acute intussusception in 
chidhood. Journal of Medical Virology, 1982. 9: p. 267-271. 

[132]. Bhisitkul DM, et al, Adenovirus infection and childhood intussusception. 
American Journal of disease control, 1992. 146: p. 1331-1333. 

[133]. Gardner PS, et al, Virus infection and intussusception in childhood. British 
Medical Journal, 1962. 2: p. 692-697. 

[134]. Mulcahy DL, Kamath, K.R., et al, A two-part study of the aethiological role of 
rotavirus in intussusception. Journal of Medical Virology, 1982. 9: p. 51-55. 

[135]. Nakagomi T, Rotavirus infection and intussusception: a view from retrospect. 
Microbiology and Immunology, 2000. 44(8): p. 619-628. 

[136]. Rennels MB, Parashar UD, Holman RC, Le CT, Chang HG, and Glass RI, 
Lack of an apparent association between intussusception and wild or vaccine 
rotavirus infection. Paediatric Infectious Disease Journal, 1998. 17: p. 924-
925. 

[137]. Parashar UD, Holman, R.C, Bresee, J.S, et al, Epidemiology of diarrhoea 
disease among children enrolled in four West Coast health maintenance 
organisations. Paediatric Infectious Disease Journal, 1998. 17: p. 605-611. 

[138]. Ugwu BT, Legbo JN, Dakum NK, Yiltok SJ, Mbah N, and Uba FA, 
Childhood intussusception: A 9-year review. Ann Trp Paediatr, 2000. 20: p. 
131-135. 

[139]. Chang EJ, Zangwill, K, Lee,H, et al, Intussusception and rotavirus disease in 
children (Abstract 845). Pediatr Res, 2000. 47 (Suppl S): p. 144A. 

[140]. Gay N, Ramsay M, and Waight P, Rotavirus vaccination and intussusception. 
Lancet, 1999. 354(956). 

[141]. Hellems MA, Waggoner-Fountain L, and Borowitz SM, Association between 
intussusception and rotavirus gastroenteritis (Abstract 1562). Pediatr Res, 
2000. 47 (Suppl S): p. 265A. 

[142]. WHO/V&B/00.23, Report of the meeting on future directions for rotavirus 
vaccine research in developing countries. 2000, Vaccines and Biologicals, 
Vaccine Development, World Health Organization: Geneva. 

[143]. Anon, Oral poliovirus vaccine (OPV) and intussusception. Weekly 
Epidemiological Record, 2000. 75: p. 345-347. 

[144]. GlaxoSmithKline, Personal Communication, Protocol 99910/204, 
GlaxoSmithKline Biologicals. 2002: Rixensart (Belgium). 

[145]. Musonda P, Mounia NH, Whitaker HJ, and Farrington CP, Self-controlled 
case series analyses:small sample performance. Computational Statistics and 
Data Analysis, 2006: p. Submitted. 

 


